Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T15:51:49.763Z Has data issue: false hasContentIssue false

Adjoint-based control of loud events in a turbulent jet

Published online by Cambridge University Press:  07 February 2014

Jeonglae Kim
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, IL 61801, USA
Daniel J. Bodony
Affiliation:
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 S. Wright Street, Urbana, IL 61801, USA
Jonathan B. Freund*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, IL 61801, USA Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 S. Wright Street, Urbana, IL 61801, USA
*
Email address for correspondence: jbfreund@illinois.edu

Abstract

Efforts to reduce the noise from turbulent jets at fixed flow conditions, with aircraft noise as the principal technological motivation, have generally involved some degree of parametric empiricism often based upon a series of trial-and-error testing. As a result, it is unclear if the modest reductions found, in rare cases that do not greatly affect the flow field or incur prohibitive losses, are near the limit of what can be accomplished or if there are undiscovered opportunities for more substantive reductions with better designs or active control. We assess this using an adjoint-based optimization procedure in conjunction with an experimentally validated large-eddy simulation of a Mach 1.3 turbulent jet. The adjoint solution provides a definitive direction in which to adjust a model control actuation in order to reduce noise, providing guidance that seems lacking by any other current means. It is found that three conjugate-gradient iterations in the control space provide ∼3.5 dB of reduction, comparable to other reductions found empirically. The control seems to work by disrupting the coherence of acoustically efficient axisymmetric flow structures. The control and noise-reduction mechanisms are informative, but also suggest that any significantly quieter state would not be a simple perturbation from the uncontrolled jet. Additional iterations might reduce noise more significantly, but there might be only modest opportunities to reduce the sound from simple round turbulent jets without radical changes or relatively sophisticated controls. Though it is difficult to prove any behaviour in a global space of actuations, there does not seem to be a direct route based upon a local sensitivity gradient to substantially quieting a jet, even with an unrealistically flexible actuation. More complex jets or other noisy flows may be more amenable to control, in which case the adjoint-based optimization procedure demonstrated here could provide invaluable engineering guidance.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007 High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224 (2), 637662.Google Scholar
Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.Google Scholar
Bodony, D. J. 2006 Analysis of sponge zones for computational fluid mechanics. J. Comput. Phys. 212 (2), 681702.CrossRefGoogle Scholar
Bodony, D. J. & Lele, S. K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17 (8), 085103.Google Scholar
Bodony, D. J. & Lele, S. K 2008 Low-frequency sound sources in high-speed turbulent jets. J. Fluid Mech. 617, 231253.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2006 Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. Intl J. Heat Fluid Flow 27, 603610.Google Scholar
Bogey, C., Bailly, C. & Juvé, D. 2003 Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation. Theor. Comput. Fluid Dyn. 16 (4), 273297.Google Scholar
Bogey, C., Marsden, O. & Bailly, C. 2012 Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105. J. Fluid Mech. 701, 352385.Google Scholar
Bridges, J. E. & Brown, C. A.2004 Parametric testing of chevrons on single flow hot jets. AIAA Paper 2004-2824.CrossRefGoogle Scholar
Bridges, J. E. & Wernet, M. P.2008 Turbulence associated with broadband shock noise in hot jets. AIAA Paper 2008-2834.CrossRefGoogle Scholar
Casalino, D. 2003 An advanced time approach for acoustic analogy predictions. J. Sound Vib. 261 (4), 583612.Google Scholar
Cavalieri, A. V. G., Daviller, G., Comte, P., Jordan, P., Tadmor, G. & Gervais, Y. 2011a Using large eddy simulation to explore sound-source mechanisms in jets. J. Sound Vib. 330 (17), 40984113.Google Scholar
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011b Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18), 44744492.Google Scholar
Cavalieri, A. V. G., Jordan, P., Gervais, Y., Wei, M. & Freund, J. B. 2010 Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22, 115113.Google Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.Google Scholar
Eschricht, D., Jordan, P., Wei, M., Freund, J. & Thiele, F.2007 Analysis of noise-controlled shear-layers. In AIAA Paper 2007-3660.Google Scholar
Ffowcs Williams, J. E. 1963 The noise from turbulence convected at high speed. Phil. Trans. R. Soc. Lond. A 255 (1061), 469503.Google Scholar
Ffowcs Williams, J. E. & Hawkings, D. L. 1969 Sound generated by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264 (1151), 321342.Google Scholar
Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.CrossRefGoogle Scholar
Freund, J. B. 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.Google Scholar
Freund, J. B. 2011 Adjoint-based optimization for understanding and suppressing jet noise. J. Sound Vib. 330 (17), 41144122.Google Scholar
Freund, J. B. & Colonius, T. 2009 Turbulence and sound-field POD analysis of a turbulent jet. Intl J. Aeroacoust. 8 (4), 337354.Google Scholar
Freund, J. B., Lele, S. K. & Moin, P. 2000 Numerical simulation of a Mach 1.92 turbulent jet and its sound field. AIAA J. 38 (11), 20232031.CrossRefGoogle Scholar
Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060. Air Force Research Laboratory, Wright-Patterson AFB.Google Scholar
Goldstein, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315333.CrossRefGoogle Scholar
Gudmundsson, K. & Colonius, T.2007 Spatial stability analysis of chevron jet profiles. AIAA Paper 2007-3599.Google Scholar
Hileman, J. I.2004 Large-scale structures and noise generation in high-speed jets. PhD thesis, Ohio State University, Columbus, Ohio.Google Scholar
Hileman, J. & Samimy, M. 2001 Turbulence structures and the acoustic far field of a mach 1.3 jet. AIAA J. 39 (9), 17161727.Google Scholar
Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.Google Scholar
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.CrossRefGoogle Scholar
Jameson, A. 1988 Aerodynamic design via control theory. J. Sci. Comput. 3 (3), 233260.Google Scholar
Jameson, A.1995 Optimum aerodynamic design using CFD and control theory. AIAA Paper 1995-1729.Google Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.CrossRefGoogle Scholar
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.Google Scholar
Karabasov, S. A., Afsar, M. Z., Hynes, T. P., Dowling, A. P., McMullan, W. A., Pokora, C. D., Page, G. J. & McGuirk, J. J. 2010 Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48 (7), 13121325.Google Scholar
Kastner, J., Samimy, M., Hileman, J. & Freund, J. B. 2006 Comparison of noise mechanisms in high and low Reynolds number high-speed jets. AIAA J. 44 (10), 22512258.Google Scholar
Kerhervé, F., Jordan, P., Cavalieri, A. V. G., Delville, J., Bogey, C. & Juvé, D. 2012 Educing the source mechanism associated with downstream radiation in subsonic jets. J. Fluid Mech. 710, 606640.Google Scholar
Kim, J.2012 Adjoint-based control of turbulent jet noise. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Kim, J. & Choi, H. 2009 Large eddy simulation of a circular jet: effect of inflow conditions on the near field. J. Fluid Mech. 620, 383411.CrossRefGoogle Scholar
Kim, J. W. & Lee, D. J. 2000 Generalized characteristic boundary conditions for computational aeroacoustics. AIAA J. 38 (11), 20402049.Google Scholar
Kleinman, R. R. & Freund, J. B.2006 Adjoint-based control of the noise from a turbulent mixing layer. AIAA Paper 2006-2501.Google Scholar
Kœnig, M., Cavalieri, A. V. G., Jordan, P., Delville, J., Gervais, Y. & Papamoschou, D. 2013a Farfield filtering and source imaging of subsonic jet noise. J. Sound Vib. 332 (18), 40674088.Google Scholar
Kœnig, M., Cavalieri, A. V. G., Jordan, P. & Gervais, Y.2013b Jet noise control by fluidic injection from a rotating plug: linear and nonlinear sound source mechanisms. In 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.Google Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.Google Scholar
Lo, S. C., Aikens, K. M., Blaisdell, G. A. & Lyrintzis, A. S. 2012 Numerical investigation of 3-d supersonic jet flows using large-eddy simulation. Intl J. Aeroacoust. 11 (7), 783812.CrossRefGoogle Scholar
Lui, C. C. M.2003 A numerical investigation of shock-associated noise. PhD thesis, Stanford University, Stanford, California.Google Scholar
Maury, R., Kœnig, M., Cattafesta, L., Jordan, P. & Delville, J. 2012 Extremum-seeking control of jet noise. Intl J. Aeroacoust. 11 (3), 459474.Google Scholar
Mendez, S., Shoeybi, M., Sharma, A., Ham, F. E., Lele, S. K. & Moin, P.2010 Large-eddy simulations of perfectly-expanded supersonic jets: quality assessment and validation. AIAA Paper 2010-271.Google Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3 (11), 27462757.Google Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes. Cambridge University Press.Google Scholar
Rizzetta, D. P., Visbal, M. R. & Blaisdell, G. A. 2003 A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation. Intl J. Numer. Meth. Fluids 42, 665693.Google Scholar
Samimy, M., Kim, J. H., Kastner, J., Adamovich, I. V. & Utkin, Y. G. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.Google Scholar
Samimy, M., Kim, J. H., Kearney-Fischer, M. & Sinha, A. 2010 Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet. J. Fluid Mech. 656, 507529.Google Scholar
Sherer, S. E., Visbal, M. R. & Galbraith, M. C.2006 Automated preprocessing tools for use with a high-order overset-grid algorithm. AIAA Paper 2006-1147.Google Scholar
Suhs, N. E., Rogers, S. E. & Dietz, W. E.2002 Pegasus 5: An automated pre-processor for overset-grid CFD. AIAA Paper 2002-3186.Google Scholar
Tanna, H. K. 1977 An experimental study of jet noise part I: Turbulent mixing noise. J. Sound Vib. 50 (3), 405428.Google Scholar
Thomas, P. D. & Lombard, C. K. 1979 Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17 (10), 10301037.Google Scholar
Thompson, P. A. 1991 Compressible-Fluid Dynamics. McGraw-Hill.Google Scholar
Uzun, A. & Hussaini, M. Y. 2009 Simulation of noise generation in the near-nozzle region of a chevron nozzle jet. AIAA J. 47 (8), 17931810.Google Scholar
Uzun, A., Lyrintzis, A. S. & Blaisdell, G. A. 2004 Coupling of integral acoustics methods with LES for jet noise prediction. Intl J. Aeroacoust. 3 (4), 297346.Google Scholar
Vinokur, M. 1974 Conservation equations of gasdynamics in curvilinear coordinate systems. J. Comput. Phys. 14 (2), 105125.Google Scholar
Wei, M.2004 Jet noise control by adjoint-based optimization. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Wei, M. & Freund, J. B. 2006 A noise-controlled free shear flow. J. Fluid Mech. 546, 123152.Google Scholar
Zaman, K. B., Bridges, J. E. & Huff, D. L. 2011 Evolution from tabs to chevron technology-a review. Intl J. Aeroacoust. 10 (5), 685710.Google Scholar