Skip to main content Accessibility help
×
×
Home

Response to an aerobic training intervention in young adults depends on ponderal index at birth

  • T. D. Brutsaert (a1), K. H. Tamvada (a2), M. Kiyamu (a2), D. D. White (a3) and T. B. Gage (a2)...

Abstract

Poor fetal growth is associated with later-life changes in adult body composition and decrements in muscle strength and morphology. Few studies have investigated the association of poor fetal growth with whole-body exercise. The purpose of this study was to investigate the association of poor fetal growth with the maximal oxygen consumption (VO2max), lactate levels during exercise and the response to aerobic training. Thirty-six college-aged men and women (aged 20.8 ± 0.3 years), born to term (37–42 weeks gestation), were recruited to participate in an 8-week training program. Participants comprised two groups, high ponderal index (HIGHPI) and low ponderal index (LOWPI) (n = 18/group), identified as falling above and below the 10th percentile of the ponderal index (g/cm3)-for-gestational age distribution, respectively. The HIGHPI and LOWPI were matched pair-wise on age, sex, body mass index and pre-study physical activity patterns. The LOWPI and HIGHPI did not differ significantly before training, after training or with a change (Δ) in training VO2max (l/min or ml/min kg/fat-free mass (FFM)). However, LOWPI had significantly lower pre-training lactate levels at similar levels of relative work output (P = 0.016), and significantly smaller decreases in lactate at a fixed level of absolute work after training (P = 0.044). These differences were independent of pre-training aerobic fitness, the change in fitness with training, diet and fuel substrate choice. The lower lactate of untrained LOWPI subjects during exercise could reflect metabolic reprograming due to intrauterine growth restriction, or could be secondary to muscle morphological and/or fiber-type distribution changes that also associate with poor fetal growth.

Copyright

Corresponding author

*Address for correspondence: Dr T. D. Brutsaert, Department of Exercise Science, Syracuse University, 820 Comstock Avenue, 201 Women's Building/Room 201, Syracuse, NY 13244-5040, USA. (Email tdbrutsa@syr.edu)

References

Hide All
1.Hales, CN, Barker, DJ, Clark, PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991; 303, 10191022.
2.Phillips, DI, Barker, DJ, Hales, CN, et al. Thinness at birth and insulin resistance in adult life. Diabetologia. 1994; 37, 150154.
3.Barker, DJ, Martyn, CN, Osmond, C, et al. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993; 307, 15241527.
4.Maltin, CA, Delday, MI, Sinclair, KD, et al. Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle. Reproduction. 2001; 122, 359374.
5.Ward, SS, Stickland, NC. Why are slow and fast muscles differentially affected during prenatal undernutrition? Muscle Nerve. 1991; 14, 259267.
6.Costello, PM, Rowlerson, A, Astaman, NA, et al. Peri-implantation and late gestation maternal undernutrition differentially affect fetal sheep skeletal muscle development. J Physiol. 2008; 586, 23712379.
7.Bauer, R, Gedrange, T, Bauer, K, et al. Intrauterine growth restriction induces increased capillary density and accelerated type I fiber maturation in newborn pig skeletal muscles. J Perinat Med. 2006; 34, 235242.
8.Labayen, I, Moreno, LA, Blay, MG, et al. Early programming of body composition and fat distribution in adolescents. J Nutr. 2006; 36, 147152.
9.Eriksson, J, Forsen, T, Tuomilehto, J, et al. Size at birth, fat-free mass and resting metabolic rate in adult life. Horm Metab Res. 2002; 34, 7276.
10.Gale, CR, Martyn, CN, Kellingray, S, et al. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001; 86, 267272.
11.Sayer, AA, Cooper, C. Fetal programming of body composition and musculoskeletal development. Early Hum Dev. 2005; 81, 735744.
12.Kuh, D, Bassey, J, Hardy, R, et al. Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am J Epidemiol. 2002; 156, 627633.
13.Taylor, DJ, Thompson, CH, Kemp, GJ, et al. A relationship between impaired fetal growth and reduced muscle glycolysis revealed by 31P magnetic resonance spectroscopy. Diabetologia. 1995; 38, 12051212.
14.Thompson, CH, Sanderson, AL, Sandeman, D, et al. Fetal growth and insulin resistance in adult life: role of skeletal muscle morphology. Clin Sci (Lond). 1997; 92, 291296.
15. Brutsaert TD, Tamvada KH, Kiyamu M, et al. Low ponderal index is associated with decreased muscle strength and fatigue resistance in college-aged women. Early Hum Dev. 2011; 87, 663669.
16.Boreham, CA, Murray, L, Dedman, D, et al. Birthweight and aerobic fitness in adolescents: the Northern Ireland Young Hearts Project. Public Health. 2001; 115, 373379.
17.Kuh, D, Hardy, R, Butterworth, S, et al. Developmental origins of midlife physical performance: evidence from a British birth cohort. Am J Epidemiol. 2006; 164, 110121.
18.te Velde, SJ, Twisk, JW, van Mechelen, W, et al. Birth weight and musculoskeletal health in 36-year-old men and women: results from the Amsterdam Growth and Health Longitudinal Study. Osteoporos Int. 2004; 15, 382388.
19.Baraldi, E, Zanconato, S, Zorzi, C, et al. Exercise performance in very low birth weight children at the age of 7–12 years. Eur J Pediatr. 1991; 150, 713716.
20.Jensen, CB, Storgaard, H, Dela, F, et al. Early differential defects of insulin secretion and action in 19-year-old caucasian men who had low birth weight. Diabetes. 2002; 51, 12711280.
21.Brons, C, Jensen, CB, Storgaard, H, et al. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab. 2008; 93, 38853892.
22.Laaksonen, DE, Lakka, HM, Lynch, J, et al. Cardiorespiratory fitness and vigorous leisure-time physical activity modify the association of small size at birth with the metabolic syndrome. Diabetes Care. 2003; 26, 21562164.
23.Vintzileos, AM, Lodeiro, JG, Feinstein, SJ, et al. Value of fetal ponderal index in predicting growth retardation. Obstet Gynecol. 1986; 67, 584588.
24.Adegboye, AR, Heitmann, B. Accuracy and correlates of maternal recall of birthweight and gestational age. BJOG. 2008; 115, 886893.
25.Matthews, DR, Hosker, JP, Rudenski, AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28, 412419.
26.Kaiser, L. Adjusting for baseline: change or percentage change? Stat Med. 1989; 8, 11831190.
27.Armitage, JA, Khan, IY, Taylor, PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004; 561, 355377.
28.Law, CM, Gordon, GS, Shiell, AW, et al. Thinness at birth and glucose tolerance in seven-year-old children. Diabet Med. 1995; 12, 2429.
29.Jensen, CB, Storgaard, H, Madsbad, S, et al. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab. 2007; 92, 15301534.
30.Ozanne, SE, Jensen, CB, Tingey, KJ, et al. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia. 2005; 48, 547552.
31.Canoy, D, Pekkanen, J, Elliott, P, et al. Early growth and adult respiratory function in men and women followed from the fetal period to adulthood. Thorax. 2007; 62, 396402.
32.Dempsey, JA, Wagner, PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999; 87, 19972006.
33.Fahey, AJ, Brameld, JM, Parr, T, et al. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J Anim Sci. 2005; 83, 25642571.
34.Quigley, SP, Kleemann, DO, Kakar, MA, et al. Myogenesis in sheep is altered by maternal feed intake during the peri-conception period. Anim Reprod Sci. 2005; 87, 241251.
35.Zhu, MJ, Ford, SP, Means, WJ, et al. Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol. 2006; 575, 241250.
36.Dwyer, CM, Stickland, NC, Fletcher, JM. The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. J Anim Sci. 1994; 72, 911917.
37.Vickers, MH, Breier, BH, McCarthy, D, et al. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol. 2003; 285, R271R273.
38.Vickers, MH, Breier, BH, Cutfield, WS, et al. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000; 279, E83E87.
39.Andersen, LG, Angquist, L, Gamborg, M, et al. Birth weight in relation to leisure time physical activity in adolescence and adulthood: meta-analysis of results from 13 nordic cohorts. PLoS One. 2009; 4, e8192.
40.Davies, AA, Smith, GD, May, MT, et al. Association between birth weight and blood pressure is robust, amplifies with age, and may be underestimated. Hypertension. 2006; 48, 431436.
41.Hovi, P, Andersson, S, Eriksson, JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med. 2007; 356, 20532063.
42.Eriksson, JG, Yliharsila, H, Forsen, T, et al. Exercise protects against glucose intolerance in individuals with a small body size at birth. Prev Med. 2004; 39, 164167.
43.Hallal, PC, Wells, JC, Reichert, FF, et al. Early determinants of physical activity in adolescence: prospective birth cohort study. BMJ. 2006; 332, 10021007.
44.Mattocks, C, Deere, K, Leary, S, et al. Early life determinants of physical activity in 11 to 12 year olds: cohort study. Br J Sports Med. 2008; 42, 721724.
45.Sayer, AA, Cooper, C, Evans, JR, et al. Are rates of ageing determined in utero? Age Ageing. 1998; 27, 579583.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Developmental Origins of Health and Disease
  • ISSN: 2040-1744
  • EISSN: 2040-1752
  • URL: /core/journals/journal-of-developmental-origins-of-health-and-disease
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed