Skip to main content Accessibility help
×
Home

Pulsatile hyperglycemia increases insulin secretion but not pancreatic β-cell mass in intrauterine growth-restricted fetal sheep

  • B. H. Boehmer (a1), L. D. Brown (a1), S. R. Wesolowski (a1), W. W. Hay (a1) and P. J. Rozance (a1)...

Abstract

Impaired β-cell development and insulin secretion are characteristic of intrauterine growth-restricted (IUGR) fetuses. In normally grown late gestation fetal sheep pancreatic β-cell numbers and insulin secretion are increased by 7–10 days of pulsatile hyperglycemia (PHG). Our objective was to determine if IUGR fetal sheep β-cell numbers and insulin secretion could also be increased by PHG or if IUGR fetal β-cells do not have the capacity to respond to PHG. Following chronic placental insufficiency producing IUGR in twin gestation pregnancies (n=7), fetuses were administered a PHG infusion, consisting of 60 min, high rate, pulsed infusions of dextrose three times a day with an additional continuous, low-rate infusion of dextrose to prevent a decrease in glucose concentrations between the pulses or a control saline infusion. PHG fetuses were compared with their twin IUGR fetus, which received a saline infusion for 7 days. The pulsed glucose infusion increased fetal arterial glucose concentrations an average of 83% during the infusion. Following the 7-day infusion, a square-wave fetal hyperglycemic clamp was performed in both groups to measure insulin secretion. The rate of increase in fetal insulin concentrations during the first 20 min of a square-wave hyperglycemic clamp was 44% faster in the PHG fetuses compared with saline fetuses (P<0.05). There were no differences in islet size, the insulin+ area of the pancreas and of the islets, and β-cell mass between groups (P>0.23). Chronic PHG increases early phase insulin secretion in response to acute hyperglycemia, indicating that IUGR fetal β-cells are functionally responsive to chronic PHG.

Copyright

Corresponding author

Address for correspondence: P. J. Rozance, Perinatal Research Facility, University of Colorado Denver, 13243 E. 23rd Ave., MS F441, Aurora, CO 80045, USA. E-mail: paul.rozance@ucdenver.edu

References

Hide All
1. Nicolini, U, Hubinont, C, Santolaya, J, Fisk, N, Rodeck, C. Effects of fetal intravenous glucose challenge in normal and growth retarded fetuses. Horm Metab Res. 1990; 22, 426430.
2. Economides, D, Proudler, A, Nicolaides, K. Plasma insulin in appropriate-and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989; 160, 10911094.
3. Van Assche, FA, Prins, FD, Aerts, L, Verjans, M. The endocrine pancreas in small-for-dates infants. Br J Obstet Gynaecol. 1977; 84, 751753.
4. Barker, DJP, Hales, CN, Fall, CHD, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993; 36, 6267.
5. Kasuga, M. Insulin resistance and pancreatic β cell failure. J Clin Invest. 2006; 116, 17561760.
6. Hales, CN, Barker, DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001; 60, 520.
7. Bazaes, RA, Salazar, TE, Pittaluga, E, et al. Glucose and lipid metabolism in small for gestational age infants at 48 hours of age. Pediatrics. 2003; 111, 804809.
8. Hofman, PL, Cutfield, WS, Robinson, EM, et al. Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metabol. 1997; 82, 402406.
9. Carver, TD, Anderson, SM, Aldoretta, PW, Hay, WW. Effect of low-level basal plus marked “pulsatile” hyperglycemia on insulin secretion in fetal sheep. Am J Physiol Endocrinol Metab. 1996; 271, E865E871.
10. Frost, MS, Zehri, AH, Limesand, SW, Hay, WW, Rozance, PJ. Differential effects of chronic pulsatile versus chronic constant maternal hyperglycemia on fetal pancreatic β-cells. J Pregnancy. 2012; 2012, 8.
11. Green, AS, Chen, X, Macko, AR, et al. Chronic pulsatile hyperglycemia reduces insulin secretion and increases accumulation of reactive oxygen species in fetal sheep islets. J Endocrinol. 2012; 212, 327342.
12. Limesand, SW, Rozance, PJ, Smith, D, Hay, WW Jr. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab. 2007; 293, E1716E1725.
13. Limesand, SW, Jensen, J, Hutton, JC, Hay, WW. Diminished β-cell replication contributes to reduced β-cell mass in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2005; 288, R1297R1305.
14. Rozance, PJ, Limesand, SW, Barry, JS, Brown, LD, Hay, WW. Glucose replacement to euglycemia causes hypoxia, acidosis, and decreased insulin secretion in fetal sheep with intrauterine growth restriction. Pediatr Res. 2009; 65, 7278.
15. Limesand, SW, Rozance, PJ, Zerbe, GO, Hutton, JC, Hay, WW Jr. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction. Endocrinology. 2006; 147, 14881497.
16. Brown, LD, Davis, M, Wai, S, et al. Chronically increased amino acids improve insulin secretion, pancreatic vascularity, and islet size in growth-restricted fetal sheep. Endocrinology. 2016; 157, 37883799.
17. Benjamin, JS, Culpepper, CB, Brown, LD, et al. Chronic anemic hypoxemia attenuates glucose-stimulated insulin secretion in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2017; 312, R492R500.
18. Gadhia, MM, Maliszewski, AM, O’Meara, MC, et al. Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep. Am J Physiol Endocrinol Metab. 2013; 304, E352E362.
19. Andrews, SE, Brown, LD, Thorn, SR, et al. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus. Endocrinology. 2015; 156, 367376.
20. Rozance, PJ, Limesand, SW, Barry, JS, et al. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1α mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab. 2008; 294, E365E370.
21. Chen, X, Kelly, AC, Yates, DT, et al. Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. J Endocrinol. 2017; 232, 285295.
22. Wong, ML, Medrano, JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 39, 75.
23. Rozance, PJ, Limesand, SW, Zerbe, GO, Hay, WW. Chronic fetal hypoglycemia inhibits the later steps of stimulus-secretion coupling in pancreatic β-cells. Am J Physiol Endocrinol Metab. 2007; 292, E1256E1264.
24. Thorn, SR, Brown, LD, Rozance, PJ, Hay, WW, Friedman, JE. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes. 2013; 62, 6573.
25. Leos, RA, Anderson, MJ, Chen, X, et al. Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab. 2010; 298, E770E778.
26. Macko, AR, Yates, DT, Chen, X, et al. Adrenal demedullation and oxygen supplementation independently increase glucose-stimulated insulin concentrations in fetal sheep with intrauterine growth restriction. Endocrinology. 2016; 157, 21042115.
27. Leoni, S, Spagnuolo, S, Terenzi, F, et al. Intracellular signalling of epinephrine in rat hepatocytes during fetal development and hepatic regeneration. Biosci Rep. 1993; 13, 5360.
28. Johnson, J, Ogawa, A, Chen, L, et al. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science. 1990; 250, 546549.
29. Thorens, B, Weir, GC, Leahy, JL, Lodish, HF, Bonner-Weir, S. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci. 1990; 87, 64926496.
30. Green, AS, Macko, AR, Rozance, PJ, et al. Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus. Am J Physiol Endocrinol Metab. 2011; 300, E817E823.
31. Rozance, PJ, Crispo, MM, Barry, JS, et al. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation. Am J Physiol Endocrinol Metab. 2009; 297, E638E646.
32. Thureen, PJ, Trembler, KA, Meschia, G, Makowski, EL, Wilkening, RB. Placental glucose transport in heat-induced fetal growth retardation. Am J Physiol Regul Integr Comp Physiol. 1992; 263, R578R585.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed