Skip to main content Accessibility help

Programming of the lung by early-life infection

  • P. M. Hansbro (a1), M. R. Starkey (a1), R. Y. Kim (a1), R. L. Stevens (a2), P. S. Foster (a1) and J. C. Horvat (a1)...


Many important human diseases, such as asthma, have their developmental origins in early life. Respiratory infections in particular may alter the course of asthma and may either protect against or promote the development of this disease. It is likely that the nature of the effects depends on the type and age of infection and is determined by the impact of infection on the immune and respiratory systems. Immunity in early life is plastic and can be moulded by antigen encounter, which may enhance or reinforce the asthmatic phenotype of early life, or induce protective responses. Chlamydial respiratory infections have specific effects and may increase asthma severity in early life by promoting systemic interleukin 13 responses and causing permanent changes in lung structure. Respiratory viral infections, such as those of respiratory syncytial virus and rhinovirus, promote pro-asthmatic responses in early life that contribute to the induction of asthma. By contrast, probiotics or infection or exposure to certain bacteria, such as Streptococcus pneumoniae, may have protective effects in asthma by increasing the numbers and activity of regulatory T cells. Here, we review the impact of infections on the developmental origins of asthma. Understanding these effects may lead to new therapeutic approaches for asthma that either target deleterious infections or utilize beneficial ones.


Corresponding author

*Address for correspondence: Professor P. M. Hansbro, Infection and Immunity, The David Maddison Clinical Sciences Building, The University of Newcastle, Cnr King and Watt Sts, Newcastle, NSW 2300, Australia. (Email


Hide All
1. Bush, A. Asthma research: the real action is in children. Paediatr Respir Rev. 2005; 6, 101110.
2. Prescott, S. The development of respiratory inflammation in children. Paediatr Respir Rev. 2006; 7, 8996.
3. Hansbro, PM, Beagley, KW, Horvat, JC, Gibson, PG. Role of atypical bacterial infection of the lung in predisposition/protection of asthma. Pharmacol Ther. 2004; 101, 193210.
4. Hansbro, NG, Horvat, JC, Wark, PA, Hansbro, PM. Understanding the mechanisms of viral induced asthma: new therapeutic directions. Pharmacol Ther. 2008; 117, 313353.
5. Maslowski, K, Mackay, C. Diet, gut microbiota and immune responses. Nat Immunol. 2011; 12, 59.
6. Nagel, G, Weinmayr, G, Kleiner, A, et al. Effect of diet on asthma and allergic sensitisation in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two. Thorax. 2010; 65, 516522.
7. Ly, N, Litonjua, A, Gold, D, Celedón, J. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol. 2011; 127, 10871094.
8. Jensen, M, Collins, C, Gibson, P, Wood, L. The obesity phenotype in children with asthma. Paediatr Respir Rev. 2011; 12, 152159.
9. Culley, FJ, Pollott, J, Openshaw, PJM. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med. 2002; 196, 13811386.
10. Horvat, J, Beagley, K, Wade, M, et al. Neonatal chlamydial infection induces mixed T-cell responses that drive allergic airway disease. Am J Respir Crit Care Med. 2007; 176, 556564.
11. Horvat, J, Starkey, M, Kim, R, et al. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J Allergy Clin Immunol. 2010; 125, 617625.
12. Thorburn, A, Hansbro, P. Harnessing regulatory T cells to suppress asthma: from potential to therapy. Am J Respir Cell Mol Biol. 2010; 43, 511519.
13. Webley, WC, Tilahun, Y, Lay, K, et al. Occurrence of Chlamydia trachomatis and Chlamydia pneumoniae in paediatric respiratory infections. Eur Respir J. 2009; 33, 360367.
14. Barreto, M, Bonafoni, S, Barberi, S, et al. Does a parent-reported history of pneumonia increase the likelihood of respiratory symptoms needing therapy in asthmatic children and adolescents? J Asthma. 2011; 48, 714720.
15. Karimi, K, Inman, M, Bienenstock, J, Forsythe, P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med. 2009; 179, 186193.
16. Arnold, I, Dehzad, N, Reuter, S, et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011; 121, 30883093.
17. Dharmage, S, Erbas, B, Jarvis, D, et al. Do childhood respiratory infections continue to influence adult respiratory morbidity? Eur Respir J. 2009; 33, 237244.
18. Hansbro, P, Kaiko, G, Foster, P. Cytokine/anti-cytokine therapy – novel treatments for asthma? Br J Pharmacol. 2011; 163, 8195.
19. Kaiko, G, Phipps, S, Hickey, D, et al. Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity. J Immunol. 2008; 180, 22252232.
20. Kaiko, G, Horvat, J, Beagley, K, Hansbro, P. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology. 2008; 123, 326338.
21. Yang, X, Gao, X. Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol. 2011; 8, 1218.
22. Wynne, O, Horvat, J, Kim, R, et al. Neonatal respiratory infection and adult re-infection: effect on GR and MR in the hippocampus in BALB/c mice. Brain Behav Immun. 2011; 25, 12141222.
23. Wynne, O, Horvat, J, Osei-Kumar, A, et al. Early life infection permanently alters hippocampal gene expression in a sex specific manner. Stress. 2011; 14, 247261.
24. Wynne, O, Horvat, J, Osei-Kumar, A, et al. Effect of neonatal Chlamydia muridarum infection on adult hippocampal glucocorticoid and mineralcorticoid receptors. Dev Psychobiol. 2012; doi:10.1002/dev.20615.
25. Singh, M, Ranjan Das, R. Probiotics for allergic respiratory diseases – putting it into perspective. Pediatr Allergy Immunol. 2009; 2, 33683376.
26. Preston, J, Thorburn, A, Starkey, M, et al. Respiratory Streptococcus pneumoniae infection suppresses allergic airways disease through the induction of regulatory T cells. Eur Respir J. 2011; 37, 5364.
27. Preston, J, Essilfie, A, Horvat, J, et al. Inhibition of allergic airways disease by immunomodulatory therapy with whole killed Streptococcus pneumoniae . Vaccine. 2007; 25, 81548162.
28. Thorburn, A, O'Sullivan, B, Thomas, R, et al. Pneumococcal conjugate vaccine-induced T regulatory cells suppress the development of allergic airways disease. Thorax. 2010; 65, 10531060.
29. Thorburn, A, Foster, P, Gibson, P, Hansbro, P. Components of Streptococcus pneumoniae suppress allergic airways disease and natural killer T cells by inducing regulatory T cells. J Immunol. 2012; in press.
30. Hilty, M, Burke, C, Pedro, H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010; 5, e 8578.
31. Herbst, T, Sichelstiel, A, Schär, C, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med. 2011; 184, 198205.
32. Huang, Y, Nelson, C, Brodie, E, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011; 127, 372381.
33. Gnarpe, J, Gnarpe, H, Sundelöf, B. Endemic prevalence of Chlamydia pneumoniae in subjectively healthy persons. Scand J Infect Dis. 1991; 23, 387388.
34. Schmidt, S, Muller, C, Mahner, B, Wiersbitzky, S. Prevalence, rate of persistence and respiratory tract symptoms of Chlamydia pneumoniae infection in 1211 kindergarten and school age children. Pediatr Infect Dis J. 2002; 21, 758762.
35. Kuo, C, Jackson, L, Campbell, L, Grayston, J. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev. 1995; 8, 451461.
36. Wark, P, Johnston, S, Simpson, J, Hensley, M, Gibson, P. Chlamydia pneumoniae immunoglobulin A reactivation and airway inflammation in acute asthma. Eur Respir J. 2002; 20, 834840.
37. Sutherland, E, Martin, R. Asthma and atypical bacterial infection. Chest. 2007; 132, 19621966.
38. Webley, W, Salva, P, Andrzejewski, C, et al. The bronchial lavage of pediatric patients with asthma contains infectious Chlamydia . Am J Respir Crit Care Med. 2005; 171, 10831088.
39. Normann, E, Gnarpe, J, Wettergren, B, et al. Association between Chlamydia pneumoniae antibodies and wheezing in young children and the influence of sex. Thorax. 2006; 61, 10541058.
40. von Hertzen, LC. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae . Eur Respir J. 2002; 19, 546556.
41. Cunningham, A, Johnston, S, Julious, S, Lampe, F, Ward, M. Chronic Chlamydia pneumoniae infection and asthma exacerbations in children. Eur Respir J. 1998; 11, 345349.
42. Emre, U, Roblin, P, Gelling, M, et al. The association of Chlamydia pneumoniae infection and reactive airway disease in children. Arch Pediatr Adolesc Med. 1994; 148, 727732.
43. Esposito, S, Blasi, F, Arosio, C, et al. Importance of acute Mycoplasma pneumoniae and Chlamydia pneumoniae infections in children with wheezing. Eur Respir J. 2000; 16, 11421146.
44. Freymuth, F, Vabret, A, Brouard, J, et al. Detection of viral, Chlamydia pneumoniae and Mycoplasma pneumoniae infections in exacerbations of asthma in children. J Clin Virol. 1999; 13, 131139.
45. Zaitsu, M. The development of asthma in wheezing infants with Chlamydia pneumoniae infection. J Asthma. 2007; 44, 565568.
46. Wang, F, He, X, Baines, K, et al. Different inflammatory phenotypes in adults and children with acute asthma. Eur Respir J. 2011; 38, 567574.
47. Webley, W, Hahn, D. Respiratory Chlamydophyla pneumoniae resides primarily in the lower airway. Eur Respir J. 2011; 38, 994995.
48. Holt, P, Sly, P. Prevention of allergic respiratory disease in infants: current aspects and future perspectives. Curr Opin Allergy Clin Immunol. 2007; 7, 547555.
49. Brunetti, L, Colazzo, D, Francavilla, R, et al. The role of pulmonary infection in pediatric asthma. Allergy Asthma Proc. 2007; 28, 190193.
50. Krüll, M, Bockstaller, P, Wuppermann, F, et al. Mechanisms of Chlamydophila pneumoniae-mediated GM-CSF release in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2006; 34, 375382.
51. Asquith, K, Horvat, J, Kaiko, G, et al. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts. PLoS Pathog. 2011; 7, e1001339.
52. Jahn, H, Krüll, M, Wuppermann, F, et al. Infection and activation of airway epithelial cells by Chlamydia pneumoniae . J Infect Dis. 2000; 182, 16781687.
53. Prochnau, D, Rödel, J, Hartmann, M, Straube, E, Figulla, H. Growth factor production in human endothelial cells after Chlamydia pneumoniae infection. Int J Med Microbiol. 2004; 294, 5357.
54. Molestina, RE, Miller, RD, Ramirez, JA, Summersgill, JT. Infection of human endothelial cells with Chlamydia pneumoniae stimulates transendothelial migration of neutrophils and monocytes. Infect Immun. 1999; 67, 13231330.
55. Coombes, B, Mahony, J. Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s). Infect Immun. 1999; 67, 29092915.
56. Rodel, J, Woytas, M, Groh, A, et al. Production of basic fibroblast growth factor and interleukin 6 by human smooth muscle cells following infection with Chlamydia pneumoniae . Infect Immun. 2000; 68, 36353641.
57. Doganci, A, Sauer, K, Karwot, R, Finotto, S. Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol. 2005; 28, 257270.
58. Wills-Karp, M, Santeliz, J, Karp, CL. The gremless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol. 2001; 1, 6975.
59. Jupelli, M, Murthy, A, Chaganty, B, et al. Neonatal chlamydial pneumonia induces altered respiratory structure and function lasting into adult life. Lab Invest. 2011; 91, 15301539.
60. Beagley, K, Huston, W, Hansbro, P, Timms, P. Chlamydial infection of immune cells: altered function and implications for disease. Crit Rev Immunol. 2009; 29, 275305.
61. Jupelli, M, Guentzel, M, Meier, P, et al. Endogenous IFN-{gamma} production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice. J Immunol. 2008; 180, 41484155.
62. Jupelli, M, Selby, D, Guentzel, M, et al. The contribution of interleukin-12/interferon-gamma axis in protection against neonatal pulmonary Chlamydia muridarum challenge. J Interferon Cytokine Res. 2010; 30, 407415.
63. Horvat, J, Starkey, M, Kim, R, et al. Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. J Immunol. 2010; 184, 41594169.
64. Essilfie, A, Simpson, J, Horvat, J, et al. Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease. PLoS Pathog. 2011; 7, e1002244.
65. Essilfie, A, Simpson, J, Dunkley, M, et al. Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of steroid-resistant neutrophilic asthma. Thorax. 2012; in press.
66. Siegle, J, Hansbro, N, Herbert, C, et al. Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice. Respir Res. 2010; 11, 1429.
67. Forsythe, P. Probiotics and lung diseases. Chest. 2011; 139, 901908.
68. Yao, T, Chang, C, Hsu, Y, Huang, J. Probiotics for allergic diseases: realities and myths. Pediatr Allergy Immunol. 2010; 21, 900919.
69. Bass, D. Behaviour of eosinophil leukocytes in acute inflammation. Lack of dependence on adrenal function. J Clin Invest. 1975; 55, 12291236.
70. Schuller, D. Prophylaxis of otitis media in asthmatic children. Pediatr Infect Dis. 1983; 2, 280283.
71. Ansaldi, F, Turello, V, Lai, P, et al. Effectiveness of a 23-valent polysaccharide vaccine in preventing pneumonia and non-invasive pneumococcal infection in elderly people: a large-scale retrospective cohort study. J Int Med Res. 2005; 33, 490500.
72. Rose, M, Schubert, R, Kujumdshiev, S, Kitz, R, Zielen, S. Immunoglobulins and immunogenicity of pneumococcal vaccination in preschool asthma. Int J Clin Pract. 2006; 60, 14251431.
73. Lee, H, Kang, J, Henrichsen, J, et al. Immunogenicity and safety of a 23-valent pneumococcal polysaccharide vaccine in healthy children and in children at increased risk of pneumococcal infection. Vaccine. 1995; 13, 15331538.
74. Kadioglu, A, Coward, W, Colston, M, Hewitt, C, Andrew, P. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun. 2004; 72, 26892697.
75. Szefler, S. Advances in pediatric asthma in 2010: addressing the major issues. J Allergy Clin Immunol. 2011; 127, 102115.


Programming of the lung by early-life infection

  • P. M. Hansbro (a1), M. R. Starkey (a1), R. Y. Kim (a1), R. L. Stevens (a2), P. S. Foster (a1) and J. C. Horvat (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed