Skip to main content Accessibility help

Profiles of gene expression in maternal blood predict offspring birth weight in normal pregnancy

  • Thomas W. McDade (a1) (a2) (a3), Chris W. Kuzawa (a1) (a2), Judith Borja (a4) (a5), Jesusa M. G. Arevalo (a6), Greg Miller (a2) (a7) and Steve W. Cole (a6) (a8)...


The association between lower birth weight and increased disease risk in adulthood has drawn attention to the physiological processes that shape the gestational environment. We implement genome-wide transcriptional profiling of maternal blood samples to identify subsets of genes and associated transcription control pathways that predict offspring birth weight. Female participants (N = 178, mean = 27.0 years) in a prospective observational birth cohort study were contacted between 2009 and 2014 to identify new pregnancies. An in-home interview was scheduled for early in the third trimester (mean = 30.3 weeks) to collect pregnancy-related information and a blood sample, and birth weight was measured shortly after delivery. Transcriptional activity in white blood cells was determined with a whole-genome gene expression direct hybridization assay. Fifty transcripts were differentially expressed in association with offspring birth weight, with 18 up-regulated in relation to lower birth weight, and 32 down-regulated. Examination of transcription control pathways identified increased activity of NF-κB, AP-1, EGR1, EGR4, and Gfi families, and reduced the activity of CEBP, in association with lower birth weight. Transcript origin analyses identified non-classical CD16+ monocytes, CD1c+ myeloid dendritic cells, and neutrophils as the primary cellular mediators of differential gene expression. These results point toward a systematic regulatory shift in maternal white blood cell activity in association with lower offspring birth weight, and they suggest that analyses of gene expression during gestation may provide insight into regulatory and cellular mechanisms that influence birth outcomes.


Corresponding author

Address for correspondence: Thomas W. McDade, Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, USA. Email:


Hide All
1. Kuzawa, CW. Developmental origins of life history: growth, productivity, and reproduction. Am J Hum Biol. 2007; 19, 654661.
2. Entringer, S, Buss, C, Wadhwa, PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal. 2012; 5, pt12pt12.
3. McDade, TW. Early environments and the ecology of inflammation. Proc Natl Acad Sci. 2012; 109, 1728117288.
4. Gluckman, PD, Hanson, MA, Cooper, C, Thornburg, KL. Effect of in utero and early-life conditions on adult health and disease. New Engl J Med. 2008; 359, 6173.
5. Barker, DJ, Osmond, C, Law, CM. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health. 1989; 43, 237240.
6. Gluckman, PD, Hanson, MA. Developmental Origins of Health and Disease, 2006.Cambridge University Press: Cambridge. xvi, 519 p., [6] p. plates.
7. Barker, DJ, Eriksson, JG, Forsen, T, Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002; 31, 12351239.
8. Conley, D, Bennett, NG. Is biology destiny? Birth weight and life chances. Am Sociolog Rev. 2000; 65, 458467.
9. Figlio, D, Guryan, J, Karbownik, K, Roth, J. The effects of poor neonatal health on children’s cognitive development. Am Econ Rev. 2014; 104, 39213955.
10. Clancy, KBH. Inflammatory Factors That Produce Variation in Ovarian and Endometrial Functioning, in Building Babies: Proximate and Ultimate Perspectives on Primate Developmental Trajectories. K. B. Clancy, H., Hinde, K., and J. Rutherford, N., Editors. in press. Springer: New York.
11. Romero, R, Gotsch, F, Pineles, B, Kusanovic, JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65, S194S202.
12. Wadhwa, PD, Garite, TJ, Porto, M, et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol. 2004; 191, 10631069.
13. Corwin, EJ, Guo, Y, Pajer, K, et al. Immune dysregulation and glucocorticoid resistance in minority and low income pregnant women. Psychoneuroendocrinology. 2013; 38, 17861796.
14. Morelli, SS, Mandal, M, Goldsmith, LT, Kashani, BN, Ponzio, NM. The maternal immune system during pregnancy and its influence on fetal development. Res Rep Biol. 2015; 6, 171189.
15. Sood, R, Zehnder, JL, Druzin, ML, Brown, PO. Gene expression patterns in human placenta. Proc Natl Acad Sci. 2006; 103, 54785483.
16. Sitras, V, Paulssen, R, Grønaas, H, et al. Differential placental gene expression in severe preeclampsia. Placenta. 2009; 30, 424433.
17. Kuzawa, CW, Fried, RL, Borja, JB, McDade, TW. Maternal pregnancy C-reactive protein predicts offspring birth size and body composition in metropolitan Cebu, Philippines. J Dev Origins Health Dis. 2017; 8, 674681.
18. Adair, LS, Popkin, BM, Akin, JS, et al. Cohort profile: the Cebu longitudinal health and nutrition survey. Int J Epidemiol. 2011; 40, 619625.
19. Perez, TL. Attrition in the Cebu longitudinal health and nutrition survey. USC-Office of Population Studies Foundation, Inc. 2015; Report Series No. 1.
20. McDade, TW, Borja, JB, Largado, F, Adair, LS, Kuzawa, CW. Adiposity and chronic inflammation in young women predict inflammation during normal pregnancy in the Philippines. J Nutr. 2016; 146, 353357.
21. Lohman, TG, Roche, AF, Martorell, R. Anthropometric Standardization Reference Manual, 1988. Champaign, IL: Human Kinetics Books.
22. Mcdade, TW, Williams, S, Snodgrass, JJ. What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 2007; 44, 899925.
23. McDade, TW, Ross K, M., Fried R, L., et al. Genome-wide profiling of rna from dried blood spots: convergence with bioinformatic results derived from whole venous blood and peripheral blood mononuclear cells. Biodemogr Soc Biol. 2016; 62, 182197.
24. Cole, SW, Yan, W, Galic, Z, Arevalo, J, Zack, JA. Expression-based monitoring of transcription factor activity: the TELiS database. Bioinformatics. 2005; 21, 803810.
25. Wingender, E, Dietze, P, Karas, H, Knuppel, R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996; 24, 238241.
26. Tibshirani, RJ, Efron, B. An introduction to the bootstrap. Monogr Statist Appl Probab. 1993; 57, 1436.
27. Cao, J, Zhang, S. Multiple comparison procedures. JAMA. 2014; 312, 543544.
28. Cole, SW, Hawkley, LC, Arevalo, JM, Cacioppo, JT. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc Natl Acad Sci U S A. 2011; 108, 30803085.
29. Lorenz, TK, Worthman, CM, Vitzthum, VJ. Links among inflammation, sexual activity and ovulation: evolutionary trade-offs and clinical implications. Evol Med Public Health. 2015; 2015, 304324.
30. Mor, G, Cardenas, I, Abrahams, V, Guller, S. Inflammation and pregnancy: the role of the immune system at the implantation site. Reprod Sci. 2011; 1221, 8087.
31. Plaks, V, Birnberg, T, Berkutzki, T, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008; 118, 39543979.
32. Black, DS, Cole, SW, Christodoulou, G, Figueiredo, JC. Genomic mechanisms of fatigue in survivors of colorectal cancer. Cancer. 2018; 124, 26372644.
33. Powell, ND, Sloan, EK, Bailey, MT, et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. P Natl Acad Sci USA. 2013; 110, 1657416579.
34. Ragsdale, H, Kuzawa, C, Borja, J, McDade, T. Inflammatory cytokines in pregnancy and birth outcomes in the Philippines. Am J Human Biol. 2019; e23245.
35. Kim, CJ, Romero, R, Chaemsaithong, P, Kim, J-S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol. 2015; 213, S53S69.
36. Ilekis, JV, Tsilou, E, Fisher, S, et al. Placental origins of adverse pregnancy outcomes: potential molecular targets: an executive workshop summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol. 2016; 215, S1S46.
37. Amit, I, Garber, M, Chevrier, N, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science. 2009; 326, 257263.
38. Decker, T, Muller, M, Stockinger, S. The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol. 2005; 5, 675687.
39. Yazdanbakhsh, M, Kremsner, PG, van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science. 2002; 296, 490494.
40. Bobel, TS, Hackl, SB, Langgartner, D, et al. Less immune activation following social stress in rural vs. urban participants raised with regular or no animal contact, respectively. P Natl Acad Sci USA. 2018; 115, 52595264.
41. McDade, TW, Beck, MA, Kuzawa, C, Adair, LS. Prenatal undernutrition, postnatal environments, and antibody response to vaccination in adolescence. Am J Clin Nutr. 2001; 74, 543548.
42. McDade, TW, Rutherford, J, Adair, L, Kuzawa, CW. Early origins of inflammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. P R Soc B. 2010; 277, 11291137.
43. McDade, TW, Ryan, C, Jones, MJ, et al. Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proc Natl Acad Sci. 2017; 114, 76117616.
44. McDade, T, Jones, M, Miller, G, et al. Birth weight and postnatal microbial exposures predict the distribution of peripheral blood leukocyte subsets in young adults in the Philippines. J Dev Origins Health Dis. 2018; 9, 198207.
45. Danese, A, Pariante, CM, Caspi, A, Taylor, A, Poulton, R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A. 2007; 104, 13191324.
46. Miller, GE, Chen, E, Fok, AK, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A. 2009; 106, 1471614721.
47. McDade, TW, Metzger, MW, Chyu, L, et al. Long-term effects of birth weight and breastfeeding duration on inflammation in early adulthood. P R Soc B. 2014; 281.
48. Miller, GE, Borders, AE, Crockett, AH, et al. Maternal socioeconomic disadvantage is associated with transcriptional indications of greater immune activation and slower tissue maturation in placental biopsies and newborn cord blood. Brain, Behav Immun. 2017.


Type Description Title
Supplementary materials

McDade et al. supplementary material
Table S1

 Unknown (15 KB)
15 KB

Profiles of gene expression in maternal blood predict offspring birth weight in normal pregnancy

  • Thomas W. McDade (a1) (a2) (a3), Chris W. Kuzawa (a1) (a2), Judith Borja (a4) (a5), Jesusa M. G. Arevalo (a6), Greg Miller (a2) (a7) and Steve W. Cole (a6) (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed