Skip to main content Accessibility help
×
Home

Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study

  • Chen-Chi Duan (a1) (a2) (a3), Cheng Li (a1) (a2) (a3), Yi-Chen He (a1) (a2) (a3), Jing-Jing Xu (a1) (a2) (a3), Chao-Yi Shi (a1) (a2) (a3), Hong-Tao Hu (a1) (a2) (a3), Yun-Fei Su (a1) (a2) (a3), Lei Chen (a1), Ya-Jing Tan (a1) (a2) (a3), Zhi-Wei Liu (a1) (a2) (a3), Jian-Zhong Sheng (a4), William D. Fraser (a5), Yan-Ting Wu (a1) (a2) (a3) and He-Feng Huang (a1) (a2) (a3)...

Abstract

Maternal supraphysiological estradiol (E2) environment during pregnancy leads to adverse perinatal outcomes. However, the influence of oocyte exposure to high E2 levels on perinatal outcomes remains unknown. Thus, a retrospective cohort study was conducted to explore the effect of high E2 level induced by controlled ovarian stimulation (COH) on further outcomes after frozen embryo transfer (FET). The study included all FET cycles (n = 10,581) between 2014 and 2017. All cycles were categorized into three groups according to the E2 level on the day of the human Chorionic Gonadotropin trigger. Odds ratios (ORs) and their confidence intervals (CIs) were calculated to evaluate the association between E2 level during COH and pregnancy outcomes and subsequent neonatal outcomes. From our findings, higher E2 level was associated with lower percentage of chemical pregnancy, clinical pregnancy, ongoing pregnancy, and live birth as well as increased frequency of early miscarriage. Preterm births were more common among singletons in women with higher E2 level during COH (aOR1 = 1.93, 95% CI: 1.22–3.06; aOR2 = 2.05, 95% CI: 1.33–3.06). Incidence of small for gestational age (SGA) was more common in both singletons (aOR1 = 2.01, 95% CI: 1.30–3.11; aOR2 = 2.51, 95% CI: 1.69–3.74) and multiples (aOR1 = 1.58, 95% CI: 1.03–2.45; aOR2 = 1.99, 95% CI: 1.05–3.84) among women with relatively higher E2 level. No association was found between high E2 level during COH and the percentage of macrosomia or large for gestational age. In summary, oocyte exposure to high E2 level during COH should be brought to our attention, since the pregnancy rate decreasing and the risk of preterm birth and SGA increasing following FET.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Address for correspondence: Yan-Ting Wu and He-Feng Huang, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Rd. Hengshan, Shanghai 200030, China. Emails: yanting_wu@163.com and Huanghefg@sjtu.edu.cn

Footnotes

Hide All

Chen-Chi Duan and Cheng Li should be considered similar in author order.

Footnotes

References

Hide All
1.Adamson, GD, de Mouzon, J, Chambers, GM, et al. International committee for monitoring assisted reproductive technology: world report on assisted reproductive technology, 2011. Fertil Steril. 2018; 110, 10671080.10.1016/j.fertnstert.2018.06.039
2.Qin, J, Liu, X, Sheng, X, et al. Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: a meta-analysis of cohort studies. Fertil Steril. 2016; 105, 7385.10.1016/j.fertnstert.2015.09.007
3.Fujii, M, Matsuoka, R, Bergel, E, et al. Perinatal risk in singleton pregnancies after in vitro fertilization. Fertil Steril. 2010; 94, 21132117.
4.Kalra, SK, Ratcliffe, SJ, Coutifaris, C, et al. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011; 118, 863871.
5.Royster, GT, Krishnamoorthy, K, Csokmay, JM, et al. Are intracytoplasmic sperm injection and high serum estradiol compounding risk factors for adverse obstetric outcomes in assisted reproductive technology? Fertil Steril. 2016; 106, 363370.
6.Pacchiarotti, A, Selman, H, Valeri, C, et al. Ovarian stimulation protocol in IVF: an up-to-date review of the literature. Curr Pharm Biotechnol. 2016; 17, 303315.10.2174/1389201017666160118103147
7.Kalra, SK, Ratcliffe, SJ, Coutifaris, C, Molinaro, T, Barnhart, KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011; 118, 863871.
8.Hu, XL, Feng, C, Lin, XH, et al. High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab. 2014; 99, 22172224.
9.Kyrou, D, Popovic-Todorovic, B, Fatemi, HM, et al. Does the estradiol level on the day of human chorionic gonadotrophin administration have an impact on pregnancy rates in patients treated with rec-FSH/GnRH antagonist? Hum Reprod. 2009; 24, 29022909.
10.Kushnir, MM, Naessen, T, Kirilovas, D, et al. Steroid profiles in ovarian follicular fluid from regularly menstruating women and women after ovarian stimulation. Clin Chem. 2009; 55, 519526.
11.Wennerholm, UB, Henningsen, AK, Romundstad, LB, et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013; 28, 25452553.
12.Pelkonen, S, Koivunen, R, Gissler, M, et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006. Hum Reprod. 2010; 25, 914923.10.1093/humrep/dep477
13.Mocanu, E, Redmond, ML, Hennelly, B, et al. Odds of ovarian hyperstimulation syndrome (OHSS) – time for reassessment. Hum Fertil (Camb). 2007; 10, 175181.10.1080/14647270701194143
14.Morris, RS, Paulson, RJ, Sauer, MV, et al. Predictive value of serum oestradiol concentrations and oocyte number in severe ovarian hyperstimulation syndrome. Hum Reprod. 1995; 10, 811814.
15.Wu, YT, Li, C, Zhu, YM, et al. Outcomes of neonates born following transfers of frozen-thawed cleavage-stage embryos with blastomere loss: a prospective, multicenter, cohort study. BMC Med. 2018; 16, 96.
16.Mikolajczyk, RT, Zhang, J, Betran, AP, et al. A global reference for fetal-weight and birthweight percentiles. Lancet. 2011; 377, 18551861.
17.Carlin, JB, Gurrin, LC, Sterne, JA, et al. Regression models for twin studies: a critical review. Int J Epidemiol. 2005; 34, 10891099.
18.Jarvela, IY, Pelkonen, S, Uimari, O, et al. Controlled ovarian hyperstimulation leads to high progesterone and estradiol levels during early pregnancy. Hum Reprod. 2014; 29, 23932401.
19.Wikland, M, Hardarson, T, Hillensjo, T, et al. Obstetric outcomes after transfer of vitrified blastocysts. Hum Reprod. 2010; 25, 16991707.
20.Pinborg, A, Loft, A, Aaris, HA, et al. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010; 94, 13201327.
21.Pereira, N, Elias, RT, Christos, PJ, et al. Supraphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod. 2017; 32, 14101417.
22.Henningsen, AK, Pinborg, A, Lidegaard, O, et al. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011; 95, 959963.
23.Baker, VL, Brown, MB, Luke, B, et al. Association of number of retrieved oocytes with live birth rate and birth weight: an analysis of 231,815 cycles of in vitro fertilization. Fertil Steril. 2015; 103, 931938.10.1016/j.fertnstert.2014.12.120
24.Sunkara, SK, La Marca, A, Seed, PT, et al. Increased risk of preterm birth and low birthweight with very high number of oocytes following IVF: an analysis of 65 868 singleton live birth outcomes. Hum Reprod. 2015; 30, 14731480.
25.Fortier, AL, McGraw, S, Lopes, FL, et al. Modulation of imprinted gene expression following superovulation. Mol Cell Endocrinol. 2014; 388, 5157.
26.Heijmans, BT, Tobi, EW, Stein, AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008; 105, 1704617049.
27.Ollikainen, M, Smith, KR, Joo, EJ, et al. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010; 19, 41764188.
28.Van der Auwera, I, D’Hooghe, T. Superovulation of female mice delays embryonic and fetal development. Hum Reprod. 2001; 16, 12371243.
29.Bonagura, TW, Babischkin, JS, Aberdeen, GW, et al. Prematurely elevating estradiol in early baboon pregnancy suppresses uterine artery remodeling and expression of extravillous placental vascular endothelial growth factor and alpha1beta1 and alpha5beta1 integrins. Endocrinology. 2012; 153, 28972906.
30.Maliqueo, M, Echiburu, B, Crisosto, N.Sex steroids modulate uterine-placental vasculature: implications for obstetrics and neonatal outcomes. Front Physiol. 2016; 7, 152.
31.Bonagura, TW, Pepe, GJ, Enders, AC, et al. Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology. 2008; 149, 50785087.
32.Barker, DJ.The fetal origins of adult hypertension. J Hypertens Suppl. 1992; 10, S39S44.
33.Cooke, CM, Shah, A, Kirschenman, RD, et al. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age. J Physiol. 2018; 596, 58075821.
34.Cooke, CM, Shah, A, Kirschenman, RD, et al. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age. J Physiol. 2018; 596, 58075821.

Keywords

Type Description Title
WORD
Supplementary materials

Duan et al. supplementary material
Tables S1-S3

 Word (36 KB)
36 KB
WORD
Supplementary materials

Duan et al. supplementary material
Figure S1

 Word (979 KB)
979 KB

Oocyte exposure to supraphysiological estradiol during ovarian stimulation increased the risk of adverse perinatal outcomes after frozen-thawed embryo transfer: a retrospective cohort study

  • Chen-Chi Duan (a1) (a2) (a3), Cheng Li (a1) (a2) (a3), Yi-Chen He (a1) (a2) (a3), Jing-Jing Xu (a1) (a2) (a3), Chao-Yi Shi (a1) (a2) (a3), Hong-Tao Hu (a1) (a2) (a3), Yun-Fei Su (a1) (a2) (a3), Lei Chen (a1), Ya-Jing Tan (a1) (a2) (a3), Zhi-Wei Liu (a1) (a2) (a3), Jian-Zhong Sheng (a4), William D. Fraser (a5), Yan-Ting Wu (a1) (a2) (a3) and He-Feng Huang (a1) (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.