Skip to main content Accessibility help

Is low birth weight an additional risk factor for hypertension in paediatric patients after kidney transplantation?

  • Larissa Badim Santos (a1), Luana Meireles Borges (a1), Livia Victorino Souza (a1), Claudia Rosso Felipe (a1), José Osmar Medina-Pestana (a1) and Maria do Carmo Franco (a1)...


Hypertension (HTN) remains a common complication after kidney transplantation among paediatric patients. Although low birth weight (LBW) has been implicated as an important risk factor for cardiovascular diseases, its effect on transplantation patients has not yet been addressed. It is essential to determine whether children with LBW who undergo transplantation are more likely to develop post-transplantation HTN. For this study, the medical records of 96 kidney recipients were retrospectively examined. A total of 83 patients fulfilled the inclusion criteria. Overall, post-transplantation HTN was observed in 54% of the recipients. Multivariate logistic regression revealed that time from transplantation >14 months (odds ratio (OR) 3.6; 95% confidence interval (CI) 1.31–10.06; P = 0.013), current CKD (OR 2.6; 95% CI 1.01–7.20; P = 0.045), presence of LBW (OR 3.6; 95% CI 1.04–12.32; P = 0.044) and current overweight/obesity (OR 3.7; 95% CI 1.02–13.91; P = 0.047) were associated with post-transplantation HTN. In conclusion, our data provide evidence for the first time that LBW is a significant predictive factor in the development of post-transplantation HTN. This finding has important clinical implications as it serves to alert clinicians about this additional risk factor in paediatric patients undergoing kidney transplant.


Corresponding author

Address for correspondence: Maria do Carmo Franco, Division of Nephrology, School of Medicine, Laboratory of Translational Research in Vascular and Molecular Physiology, Federal University of São Paulo, Rua Botucatu, 862-São Paulo, SP, Brazil. Email:


Hide All
1. McDonald, SP, Craig, JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004; 350, 26542662.
2. Wigger, M, Drückler, E, Muscheites, J, Stolpe, HJ. Course of glomerular filtration rate after renal transplantation and the influence of hypertension. Clin Nephrol. 2001; 56, S30S34.
3. Seeman, T. Hypertension after renal transplantation. Pediatr Nephrol. 2009; 24, 959972.
4. Buscher, R, Vester, U, Wingen, AM, Hoyer, PF. Pathomecanisms and the diagnosis of arterial hypertension in pediatric renal allograft recipients. Pediatr Nephrol. 2004; 19, 12021211.
5. Mitsnefes, MM, Khoury, PR, McEnery, PT. Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr. 2003; 143, 98103.
6. Charnaya, O, Moudgil, A. Hypertension in the pediatric kidney transplant recipient. Front Pediatr. 2017; 5, 86. doi: 10.3389/fped.2017.00086.
7. Barker, DJ. Early growth and cardiovascular disease. Arch Dis Child. 1999; 80, 305307.
8. Eriksson, M, Wallander, MA, Krakau, I, Wedel, H, Svardsudd, K. Birth weight and cardiovascular risk factors in a cohort followed until 80 years of age: the study of men born in 1913. J Intern Med. 2004; 255, 236246.
9. Franco, MC, Christofalo, DM, Sawaya, AL, Ajzen, SA, Sesso, R. Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension. 2006; 48, 4550.
10. Franco, MC, Nishida, SK, Sesso, R. GFR estimated from cystatin C versus creatinine in children born small for gestational age. Am J Kidney Dis. 2008; 51, 925932.
11. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004; 114, 122.
12. Schwartz, GJ, Work, DF. Measurement and estimation of GFR in children and adolescents. J Am Soc Nephrol. 2009; 4, 18321843.
13. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39, S14S266.
14. Weir, MR, Burgess, ED, Cooper, JE, et al. Assessment and management of hypertension in transplant patients. J Am Soc Nephrol. 2015; 26, 12481260.
15. Silverstein, DM, Mitchell, M, LeBlanc, P, Boudreaux, JP. Assessment of risk factors for cardiovasuclar disease in pediatric renal transplant patients. Pediatr Transplant. 2007; 11, 721729.
16. Nagasako, SS, Nogueira, PCK, Machado, PGP, Pestana, JOM. Arterial hypertension following renal transplantation in childrena short term study. Pediatr Nephrol. 2003; 18, 12701274.
17. Nagasako, SS, Nogueira, PC, Machado, PG, Pestana, JO. Risk factors for hypertension 3 years after renal transplantation in children. Pediatr Nephrol. 2007; 22, 13631368.
18. Carvalho, MFC, Soares, V. Factors associated with arterial hypertension after renal transplantation. Transplant Proc. 1998; 30, 28722873.
19. Franco, MC, Higa, EM, D’Almeida, V, et al. Homocysteine and nitric oxide are related to blood pressure and vascular function in small-for-gestational-age children. Hypertension. 2007; 50, 396402.
20. Luyckx, VA, Brenner, BM. The clinical importance of nephron mass. J Am Soc Nephrol. 2010; 21, 898910.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed