Skip to main content Accessibility help
×
Home

Diet and physical activity in pregnancy and offspring’s cardiovascular health: a systematic review

  • T. M. van Elten (a1) (a2) (a3) (a4) (a5), M. D. A. Karsten (a2) (a3) (a4) (a5) (a6), M. N. M. van Poppel (a1) (a4) (a7), A. Geelen (a8), J. Limpens (a9), T. J. Roseboom (a2) (a3) (a4) (a5) and R. J. B. J. Gemke (a4) (a5) (a10)...

Abstract

There is increasing evidence linking maternal diet and physical activity before and during pregnancy with offspring’s cardiovascular health. Although many studies examined this association, the evidence has not been reviewed systematically. We therefore undertook a systematic review to synthesize evidence examining the association of maternal diet and physical activity before and during pregnancy with offspring’s blood pressure and vascular health. We systematically searched the databases MEDLINE and EMBASE from inception to June 30, 2017. Eligibility screening, data extraction and quality assessment were performed by two independent reviewers. A total of 19 articles were included comprising three randomized controlled trials and 16 observational studies. Of the studies that examined the association of interest, 60% (three out of five studies) showed that high maternal carbohydrate intake was associated with higher offspring’s blood pressure. Maternal protein intake during pregnancy was negatively associated with offspring carotid intima-media thickness in two out of two studies. No consistent findings for maternal fatty acid intake were found. There were too few studies to draw conclusions on energy intake, fibre intake, protein/carbohydrate ratio, specific foods, dietary patterns and maternal physical activity. Heterogeneity in exposure and outcome assessment hampered pooling. Also, owing to the observational nature of most studies, causality cannot be established. Harmonization of valid exposure and outcome measurements, and the development of core outcome sets are needed to enable more robust conclusions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diet and physical activity in pregnancy and offspring’s cardiovascular health: a systematic review
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diet and physical activity in pregnancy and offspring’s cardiovascular health: a systematic review
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diet and physical activity in pregnancy and offspring’s cardiovascular health: a systematic review
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

*Address for correspondence: T. M. van Elten, Department of Public and Occupational Health, Amsterdam UMC, VU University Medical Centre, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands. E-mail: t.vanelten@vumc.nl

References

Hide All
1. World Health Organization. Cardiovascular diseases (CVDs). http://www.who.int/mediacentre/factsheets/fs317/en/. Published 2017.
2. Berenson, GS, Bogalusa Heart Study Investigators. Bogalusa Heart Study: a long-term community study of a rural biracial (Black/White) population. Am J Med Sci. 2001; 322, 293300.
3. Davis, PH, Dawson, JD, Riley, WA, Lauer, RM. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: The Muscatine Study. Circulation. 2001; 104, 28152819.
4. Raitakari, OT, Juonala, M, Ronnemaa, T, et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol. 2008; 37, 12201226.
5. Barker, DJP. The origins of the developmental origins theory. J Intern Med. 2007; 261, 412417.
6. Wadhwa, P, Buss, C, Entringer, S, Swanson, J. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009; 27, 358368.
7. Bateson, P, Barker, D, Clutton-Brock, T, et al. Developmental plasticity and human health. Nature. 2004; 430, 419421.
8. Gluckman, PD, Hanson, MA. Living with the past: evolution, development, and patterns of disease. Science. 2004; 305, 17331736.
9. Roseboom, TJ, van der Meulen, JH, Ravelli, AC, et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001; 185, 9398.
10. Huang, C, Li, Z, Wang, M, Martorell, R. Early life exposure to the 1959-1961 Chinese famine has long-term health consequences. J Nutr. 2010; 140, 18741878.
11. Shiell, AW, Campbell-Brown, M, Haselden, S, et al. High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension. 2001; 38, 12821288.
12. Campbell, DM, Hall, MH, Barker, DJ, et al. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynaecol. 1996; 103, 273280.
13. Blaize, AN, Pearson, KJ, Newcomer, SC. Impact of maternal exercise during pregnancy on offspring chronic disease susceptibility. Exerc Sport Sci Rev. 2015; 43, 198203.
14. The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions; 2011.
15. National Institutes of Health – National Heart Lung and Blood Institute. Background: development and use of study quality assessment tools, 2014. https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/background
16. National Institutes of Health – National Heart Lung and Blood institute. Quality assessment tool for observational cohort and cross-sectional studies, 2014. https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/cohort
17. Aaltonen, J, Ojala, T, Laitinen, K, et al. Evidence of infant blood pressure programming by maternal nutrition during pregnancy: a prospective randomized controlled intervention study. J Pediatr. 2008; 152, 7984.e2.
18. Kizirian, NV, Kong, Y, Muirhead, R, et al. Effects of a low-glycemic index diet during pregnancy on offspring growth, body composition, and vascular health: a pilot randomized controlled trial. Am J Clin Nutr. 2016; 103, 10731082.
19. Normia, J, Laitinen, K, Isolauri, E, et al. Impact of intrauterine and post-natal nutritional determinants on blood pressure at 4 years of age. J Hum Nutr Diet. 2013; 26, 544552.
20. Adair, LS, Kuzawa, CW, Borja, J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation. 2001; 104, 10341039.
21. Blumfield, M, Nowson, C, Hure, A, et al. Lower protein-to-carbohydrate ratio in maternal diet is associated with higher childhood systolic blood pressure up to age four years. Nutrients. 2015; 7, 30783093.
22. Bryant, J, Hanson, M, Peebles, C, et al. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years. Circ Res. 2015; 116, 12021205.
23. Chatzi, L, Rifas-Shiman, SL, Georgiou, V, et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr Obes. 2017; 12(Suppl 1), 4756.
24. Danielsen, I, Granström, C, Rytter, D, et al. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring? A prospective study over two decades. J Epidemiol Community Health. 2013; 67, 648654.
25. Gale, CR, Jiang, B, Robinson, SM, et al. Maternal diet during pregnancy and carotid intima-media thickness in children. Arterioscler Thromb Vasc Biol. 2006; 26, 18771882.
26. Hrolfsdottir, L, Halldorsson, TI, Rytter, D, et al. Maternal macronutrient intake and offspring blood pressure 20 years later. J Am Heart Assoc. 2017; 6, e005808.
27. Huh, SY, Rifas-Shiman, SL, Kleinman, KP, et al. Maternal protein intake is not associated with infant blood pressure. Int J Epidemiol. 2005; 34, 378384.
28. Leary, SD, Ness, AR, Emmett, PM, et al. Maternal diet in pregnancy and offspring blood pressure. Arch Dis Child. 2005; 90, 492493.
29. Leary, SD, Brion, M-J, Lawlor, DA, Smith, GD, Ness, AR. Lack of emergence of associations between selected maternal exposures and offspring blood pressure at age 15 years. J Epidemiol Community Health. 2013; 67, 320326.
30. Leermakers, ETM, Tielemans, MJ, van den Broek, M, et al. Maternal dietary patterns during pregnancy and offspring cardiometabolic health at age 6 years: the Generation R Study. Clin Nutr. 2017; 36, 477484.
31. May, LE, Scholtz, SA, Suminski, R, Gustafson, KM. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum Dev. 2014; 90, 3338.
32. Millard, LAC, Lawlor, DA, Fraser, A, Howe, LD. Physical activity during pregnancy and offspring cardiovascular risk factors: findings from a prospective cohort study. BMJ Open. 2013; 3, e003574.
33. Rerkasem, K, Wongthanee, A, Rerkasem, A, et al. Intrauterine nutrition and carotid intimal media thickness in young Thai adults. Asia Pac J Clin Nutr. 2012; 21, 247252.
34. Rytter, D, Bech, BH, Halldorsson, T, et al. No association between the intake of marine n-3 PUFA during the second trimester of pregnancy and factors associated with cardiometabolic risk in the 20-year-old offspring. Br J Nutr. 2013; 110, 20372046.
35. van den Hil, LCL, Rob Taal, H, de Jonge, LL, et al. Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study. Br J Nutr. 2013; 110, 14541464.
36. Hure, AJ, Collins, CE, Giles, WB, Wright, IMR, Smith, R. Protocol for the Women And Their Children’s Health (WATCH) study: a cohort of pregnancy and beyond. J Epidemiol. 2012; 22, 267275.
37. Roseboom, TJ, van der Meulen, JH, van Montfrans, GA, et al. Maternal nutrition during gestation and blood pressure in later life. J Hypertens. 2001; 19, 2934.
38. Duggleby, SL, Jackson, AA. Protein, amino acid and nitrogen metabolism during pregnancy: how might the mother meet the needs of her fetus? Curr Opin Clin Nutr Metab Care. 2002; 5, 503509.
39. Godfrey, K, Robinson, S, Barker, DJ, Osmond, C, Cox, V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ. 1996; 312, 410414.
40. Thornburg, KL, O’Tierney, PF, Louey, S. Review: The placenta is a programming agent for cardiovascular disease. Placenta. 2010; 31(Suppl), S549.
41. Barker, DJP, Thornburg, KL, Osmond, C, Kajantie, E, Eriksson, JG. The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol. 2010; 54, 525530.
42. Franco, M, Arruda, RMM, Dantas, APV, et al. Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring. Cardiovasc Res. 2002; 56, 145153.
43. Drake, AJ, Reynolds, RM. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction. 2010; 140, 387398.
44. Dasinger, JH, Alexander, BT. Gender differences in developmental programming of cardiovascular diseases. Clin Sci (Lond). 2016; 130, 337348.
45. Grigore, D, Ojeda, NB, Alexander, BT. Sex differences in the fetal programming of hypertension. Gend Med. 2008; 5, S121S132.
46. Ojeda, NB, Intapad, S, Alexander, BT. Sex differences in the developmental programming of hypertension. Acta Physiol (Oxf). 2014; 210, 307316.
47. Alexander, BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension. 2003; 41, 457462.
48. Patel, N, Godfrey, KM, Pasupathy, D, et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int J Obes. 2017; 41, 10181026.
49. Harding, JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001; 30, 1523.
50. Chavatte-Palmer, P, Tarrade, A, Rousseau-Ralliard, D. Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health. 2016; 13, 586.
51. Oliver Daly, J. Harmonisation of research outcomes for meaningful translation to practice: The role of Core Outcome Sets and the CROWN Initiative. Aust NZ J Obstet Gynaecol. 2018; 58, 1516.
52. Duffy, J, Rolph, R, Gale, C, et al. Core outcome sets in women’s and newborn health: a systematic review. BJOG: An Int J Obstet Gynaecol. 2017; 124, 14811489.
53. Rosenfeld, CS. Homage to the ‘H’ in developmental origins of health and disease. J Dev Orig Health Dis. 2017; 8, 829.

Keywords

Type Description Title
PDF
Supplementary materials

van Elten et al. supplementary material
van Elten et al. supplementary material 1

 PDF (229 KB)
229 KB
PDF
Supplementary materials

van Elten et al. supplementary material
van Elten et al. supplementary material 2

 PDF (413 KB)
413 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed