Skip to main content Accessibility help
×
Home

Developmental programming of cardiovascular disease by prenatal hypoxia

  • D. A. Giussani (a1) and S. T. Davidge (a2)

Abstract

It is now recognized that the quality of the fetal environment during early development is important in programming cardiovascular health and disease in later life. Fetal hypoxia is one of the most common consequences of complicated pregnancies worldwide. However, in contrast to the extensive research effort on pregnancy affected by maternal nutrition or maternal stress, the contribution of pregnancy affected by fetal chronic hypoxia to developmental programming is only recently becoming delineated and established. This review discusses the increasing body of evidence supporting the programming of cardiac susceptibility to ischaemia and reperfusion (I/R) injury, of endothelial dysfunction in peripheral resistance circulations, and of indices of the metabolic syndrome in adult offspring of hypoxic pregnancy. An additional focus of the review is the identification of plausible mechanisms and the implementation of maternal and early life interventions to protect against adverse programming.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Developmental programming of cardiovascular disease by prenatal hypoxia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Developmental programming of cardiovascular disease by prenatal hypoxia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Developmental programming of cardiovascular disease by prenatal hypoxia
      Available formats
      ×

Copyright

Corresponding author

*Address for correspondence: Prof. D. A. Giussani, Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK. (Email dag26@cam.ac.uk)

References

Hide All
1.World Health Organization (WHO). World Health Statistics, 2012. World Health Organization: Geneva, Switzerland. ISBN 978 92 4 156444 1.
2.European Heart Network and European Society of Cardiology. European Cardiovascular Disease Statistics, 2012. European Heart Network and European Society of Cardiology: Brussels, Belgium. ISBN 978-2-9537898-1-2.
3.Conference Board of Canada. The Canadian Heart Health Strategy: Risk Factors and Future Cost Implications, 2010. Report, February 2010.
4.Heidenreich, PA, Trogdon, JG, Khavjou, OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011; 123, 933944.
5.Agarwal, A, Williams, GH, Fisher, NDL. Genetics of human hypertension. Trends Endocrin Metab (Review). 2005; 16, 127133.
6.Barker, DJP. Mothers, Babies and Disease in Later Life, 1994. BMJ Publishing Group: London.
7.Gluckman, PD, Hanson, MA, Cooper, C, Thornburg, KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008; 359, 6173.
8.Barker, DJP, Osmond, C, Winter, PD, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989; 577580.
9.Rich-Edwards, JW, Stampfer, MJ, Manson, JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997; 315, 396400.
10.Leon, D, Lithell, HO, Vagero, D, et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15000 Swedish men and women born 1915–29. BMJ. 1998; 317, 241245.
11.Fall, CHD, Stein, CE, Kumaran, K, et al. Size at birth, maternal weight, and non-insulin dependent diabetes in South India. Diabet Med. 1998; 15, 220227.
12.Huang, RC, Mori, TA, Beilin, LJ. Early life programming of cardiometabolic disease in the Western Australian pregnancy cohort (Raine) study. Clin Exp Pharmacol Physiol. 2012; 39, 973978.
13.Levitt, NS, Lambert, EV. The foetal origins of the metabolic syndrome – a South African perspective. Cardiovasc J S Afr. 2002; 13, 179180.
14.Silva, AA, Santos, CJ, Amigo, H, et al. Birth weight, current body mass index, and insulin sensitivity and secretion in young adults in two Latin American populations. Nutr Metab Cardiovasc Dis. 2012; 22, 533539.
15.Roseboom, TJ, van der Meulen, JH, Ravelli, AC, et al. Blood pressure in adults after prenatal exposure to famine. J Hypertens. 1999; 17, 325330.
16.Eskenazi, B, Marks, AR, Catalano, R, Bruckner, T, Toniolo, PG. Low birth weight in New York City and upstate New York following the events of September 11th. Hum Reprod. 2007; 22, 30133020.
17.Dalziel, SR, Walker, NK, Parag, V, et al. Cardiovascular risk factors after exposure to antenatal betamethasone: 30-year follow-up of a randomised controlled trial. Lancet. 2005; 365, 18561862.
18.McMillen, IC, Robinson, JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005; 85, 571633.
19.Seckl, JR, Meaney, MJ. Glucocorticoid programming. Ann N Y Acad Sci. 2004; 1032, 6384.
20.Koos, BJ. Adenosine A2a receptors and O2 sensing in development. Am J Physiol Regul Integr Comp Physiol. 2011; 301, R601R622.
21.Giussani, DA, Phillips, PS, Anstee, S, Barker, DJ. Effects of altitude versus economic status on birth weight and body shape at birth. Pediatr Res. 2001; 49, 490494.
22.Moore, LG, Charles, SM, Julian, CG. Humans at high altitude: hypoxia and fetal growth. Respir Physiol Neurobiol. 2011; 178, 181190.
23.Cohn, HE, Sacks, EJ, Heymann, MA, Rudolph, AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974; 120, 817824.
24.Boyle, D, Hirst, K, Zerbe, G, Meschia, G, Wilkening, R. Fetal hind limb oxygen consumption and blood flow during acute graded hypoxia. Pediatr Res. 1990; 28, 94100.
25.Giussani, DA, Spencer, JA, Moore, PJ, Bennet, L, Hanson, MA. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993; 461, 431449.
26.Jones, CT, Robinson, RO. Plasma catecholamines in foetal and adult sheep. J Physiol. 1975; 248, 1533.
27.Fletcher, AJ, Edwards, CM, Gardner, DS, Fowden, AL, Giussani, DA. Neuropeptide Y in the sheep fetus: effects of acute hypoxemia and dexamethasone during late gestation. Endocrinology. 2000; 141, 39763982.
28.Perez, R, Espinoza, M, Riquelme, R, Parer, JT, Llanos, AJ. Arginine vasopressin mediates cardiovascular responses to hypoxemia in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 1989; 256, R1011R1018.
29.Morrison, S, Gardner, DS, Fletcher, AJ, Bloomfield, MR, Giussani, DA. Enhanced nitric oxide activity offsets peripheral vasoconstriction during acute hypoxaemia via chemoreflex and adrenomedullary actions in the sheep fetus. The Journal of Physiology. 2003; 547, 283291.
30.Thakor, AS, Richter, HG, Kane, AD, et al. Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol. 2010; 588, 42354247.
31.Thakor, AS, Herrera, EA, Serón-Ferré, M, Giussani, DA. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J Pineal Res. 2010; 49, 399406.
32.Kane, AD, Herrera, EA, Hansell, JA, Giussani, DA. Statin treatment depresses the fetal defence to acute hypoxia via increasing nitric oxide bioavailability. J Physiol. 2012; 590(Pt 2), 323334.
33.Herrera, EA, Kane, AD, Hansell, JA, et al. A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. J Physiol. 2012; 590(Pt 8), 18251837.
34.Kamitomo, M, Alonso, JG, Okai, T, Longo, LD, Gilbert, RD. Effects of long-term, high-altitude hypoxemia on ovine fetal cardiac output and blood flow distribution. Am J Obstet Gynecol. 1993; 169, 701707.
35.Richardson, BS, Bocking, AD. Metabolic and circulatory adaptations to chronic hypoxia in the fetus. Comp Biochem Physiol A MolIntegr Physiol. 1998; 119, 717723.
36.Morrison, J. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008; 35, 730743.
37.McMillen, IC, Adams, MB, Ross, JT, Coulter, CL, et al. Fetal growth restriction: adaptations and consequences. Reproduction. 2001; 122, 195204.
38.Bertram, CE, Hanson, MA. Animal models and programming of metabolic syndrome. Br Med Bull. 2001; 60, 103121.
39.Louey, S, Cock, ML, Harding, R. Postnatal development of arterial pressure: influence of the intrauterine environment. Arch Physiol Biochem. 2003; 111, 5360.
40.Armitage, JA, Khan, IY, Taylor, PD, Nathanielsz, PW, Poston, L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004; 561, 355377.
41.Langley-Evans, SC, Bellinger, L, McMullen, S. Animal models of programming: early life influences on appetite and feeding behaviour. Matern Child Nutr. 2005; 1, 142148.
42.Ruijtenbeek, K, le Noble, FAC, Janssen, GMJ, et al. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation. 2000; 102, 28922897.
43.Miller, SL, Green, LR, Peebles, DM, Hanson, MA, Blanco, CE. Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am J Obstet Gynecol. 2002; 186, 261267.
44.Rouwet, EV, Tintu, AN, Schellings, MW, et al. Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation. 2002; 105, 27912796.
45.Ruijtenbeek, K, Kessels, LC, De Mey, JG, Blanco, CE. Chronic moderate hypoxia and protein malnutrition both induce growth retardation, but have distinct effects on arterial endothelium-dependent reactivity in the chicken embryo. Pediatr Res. 2003; 53, 573579.
46.Villamor, E, Kessels, CG, Ruijtenbeek, K, et al. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. Am J Physiol Regul Integr Comp Physiol. 2004; 287, R642R651.
47.Sharma, SK, Lucitti, JL, Nordman, C, et al. Impact of hypoxia on early chick embryo growth and cardiovascular function. Pediatr Res. 2006; 59, 116120.
48.Tintu, AN, Noble, FA, Rouwet, EV. Hypoxia disturbs fetal hemodynamics and growth. Endothelium. 2007; 14, 353360.
49.Giussani, DA, Salinas, CE, Villena, M, Blanco, CE. The role of oxygen in prenatal growth: studies in the chick embryo. J Physiol. 2007; 585(Pt 3), 911917.
50.Tintu, A, Rouwet, E, Verlohren, S, et al. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS One. 2009; 4, e5155.
51.Lindgren, I, Altimiras, J. Chronic prenatal hypoxia sensitizes beta-adrenoceptors in the embryonic heart but causes postnatal desensitization. Am J Physiol Regul Integr Comp Physiol. 2009; 297, R258R264.
52.Salinas, CE, Blanco, CE, Villena, M, et al. Cardiac and vascular disease prior to hatching in chick embryos incubated at high altitude. J DOHaD. 2010; 1, 6066.
53.Lindgren, I, Altimiras, J. Sensitivity of organ growth to chronically low oxygen levels during incubation in Red Junglefowl and domesticated chicken breeds. Poult Sci. 2011; 90, 126135.
54.Jacobs, R, Robinson, JS, Owens, JA, Falconer, J, Webster, ME. The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J Dev Physiol. 1988; 10, 97112.
55.Thompson, JA, Richardson, BS, Gagnon, R, Regnault, TR. Chronic intrauterine hypoxia interferes with aortic development in the late gestation ovine fetus. J Physiol. 2011; 589(Pt 13), 33193332.
56.Alonso, JG, Okai, T, Longo, LD, Gilbert, RD. Cardiac function during long-term hypoxemia in fetal sheep. Am J Physiol. 1989; 257(Pt 2), H581H589.
57.Kamitomo, M, Longo, LD, Gilbert, RD. Right and left ventricular function in fetal sheep exposed to long-term high-altitude hypoxemia. Am J Physiol. 1992; 262(Pt 2), H399H405.
58.Kamitomo, M, Longo, LD, Gilbert, RD. Cardiac function in fetal sheep during two weeks of hypoxemia. Am J Physiol. 1994; 266(Pt 2), R1778R1785.
59.Browne, VA, Stiffel, VM, Pearce, WJ, Longo, LD, Gilbert, RD. Activator calcium and myocardial contractility in fetal sheep exposed to long-term high-altitude hypoxia. Am J Physiol. 1997; 272(Pt 2), H1196H1204.
60.Browne, VA, Stiffel, VM, Pearce, WJ, Longo, LD, Gilbert, RD. Cardiac beta-adrenergic receptor function in fetal sheep exposed to long-term high-altitude hypoxemia. Am J Physiol. 1997; 273(Pt 2), R2022R2031.
61.Gilbert, RD. Fetal myocardial responses to long-term hypoxemia. Comp Biochem Physiol A Mol Integr Physiol. 1998; 119, 669674.
62.Kamitomo, M, Onishi, J, Gutierrez, I, Stiffel, VM, Gilbert, RD. Effects of long-term hypoxia and development on cardiac contractile proteins in fetal and adult sheep. J Soc Gynecol Investig. 2002; 9, 335341.
63.Onishi, J, Browne, VA, Kono, S, Stiffel, VM, Gilbert, RD. Effects of long-term high-altitude hypoxia and troponin I phosphorylation on cardiac myofilament calcium responses in fetal and nonpregnant sheep. J Soc Gynecol Investig. 2004; 11, 18.
64.Gilbert, RD, Pearce, WJ, Longo, LD. Fetal cardiac and cerebrovascular acclimatization responses to high altitude, long-term hypoxia. High Alt Med Biol. 2003; 4, 203213.
65.Kim, YH, Veille, JC, Cho, MK, et al. Chronic hypoxia alters vasoconstrictive responses of femoral artery in the fetal sheep. J Korean Med Sci. 2005; 20, 1319.
66.Camm, EJ, Hansell, JA, Kane, AD, et al. Partial contributions of developmental hypoxia and undernutrition to prenatal alterations in somatic growth and cardiovascular structure and function. Am J Obstet Gynecol. 2010; 203, 495, e24–34.
67.Herrera, EA, Camm, EJ, Cross, CM, et al. Morphological and functional alterations in the aorta of the chronically hypoxic fetal rat. J Vasc Res. 2012; 49, 5058.
68.Thompson, LP, Weiner, CP. Effects of acute and chronic hypoxia on nitric oxide-mediated relaxation of fetal guinea pig arteries. Am J Obstet Gynecol. 1999; 181, 105111.
69.Thompson, LP, Aguan, K, Pinkas, G, Weiner, CP. Chronic hypoxia increases the NO contribution of acetylcholine vasodilation of the fetal guinea pig heart. Am J Physiol Regul Integr Comp Physiol. 2000; 279, R1813R1820.
70.Thompson, LP. Effects of chronic hypoxia on fetal coronary responses. High Alt Med Biol. 2003; 4, 215224.
71.Williams, SJ, Campbell, ME, McMillen, IC, Davidge, ST. Differential effects of maternal hypoxia or nutrient restriction on carotid and femoral vascular function in neonatal rats. Am J Physiol Regul Integr Comp Physiol. 2005; 288, R360R367.
72.Williams, SJ, Hemmings, DG, Mitchell, JM, McMillen, IC, Davidge, ST. Effects of maternal hypoxia or nutrient restriction during pregnancy on endothelial function in adult male rat offspring. J Physiol. 2005; 565(Pt 1), 125135.
73.Hemmings, DG, Williams, SJ, Davidge, ST. Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy. Am J Physiol Heart Circ Physiol. 2005; 289, H674H682.
74.McEniery, CM, Wilkinson, IB. Large artery stiffness and inflammation. J Hum Hypertens. 2005; 19, 507509.
75.Arnett, DK, Evans, GW, Riley, WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol. 1994; 140, 669682.
76.Crispi, F, Figueras, F, Cruz-Lemini, M, et al. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol. 2012; 207, 121, e1–9.
77.Cruickshank, K, Riste, L, Anderson, SG, et al. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002; 106, 20852090.
78.Skilton, MR, Evans, N, Griffiths, KA, Harmer, JA, Celermajer, DS. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005; 365, 14841486.
79.Koklu, E, Kurtoglu, S, Akcakus, M, et al. Increased aortic intima-media thickness is related to lipid profile in newborns with intrauterine growth restriction. Horm Res. 2006; 65, 269275.
80.Akira, M, Yoshiyuki, S. Placental circulation, fetal growth, and stiffness of the abdominal aorta in newborn infants. J Pediatr. 2006; 148, 4953.
81.Cosmi, E, Visentin, S, Fanelli, T, Mautone, AJ, Zanardo, V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet Gynecol. 2009; 114, 11091114.
82.Veille, JC, Hanson, R, Sivakoff, M, Hoen, H, Ben-Ami, M. Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am J Perinatol. 1993; 10, 275279.
83.Mayhew, TM, Gregson, C, Fagan, DG. Ventricular myocardium in control and growth-retarded human fetuses: growth in different tissue compartments and variation with fetal weight, gestational age, and ventricle size. Hum Pathol. 1999; 30, 655660.
84.Rizzo, G, Capponi, A, Rinaldo, D, Arduini, D, Romanini, C. Ventricular ejection force in growth-retarded fetuses. Ultrasound Obstet Gynecol. 1995; 5, 247255.
85.Miyague, NI, Ghidini, A, Fromberg, R, Miyague, LL. Alterations in ventricular filling in small-for-gestational-age fetuses. Fetal Diagn Ther. 1997; 12, 332335.
86.Li, G, Xiao, Y, Estrella, JL, et al. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003; 10, 265274.
87.Li, G, Bae, S, Zhang, L. Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am J Physiol Heart Circ Physiol. 2004; 286, H1712H1719.
88.Xue, Q, Zhang, L. Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischemia and reperfusion injury in adult male offspring: role of protein kinase C epsilon. J Pharmacol Exp Ther. 2009; 330, 624632.
89.Patterson, AJ, Chen, M, Xue, Q, Xiao, D, Zhang, L. Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ Res. 2010; 107, 365373.
90.Patterson, AJ, Zhang, L. Hypoxia and fetal heart development. Curr Mol Med. 2010; 10, 653666.
91.Xue, Q, Dasgupta, C, Chen, M, Zhang, L. Foetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury. Cardiovasc Res. 2011; 89, 300308.
92.Patterson, AJ, Xiao, D, Xiong, F, Dixon, B, Zhang, L. Hypoxia-derived oxidative stress mediates epigenetic repression of PKCε gene in foetal rat hearts. Cardiovasc Res. 2012; 93, 302310.
93.Xu, Y, Williams, SJ, O'Brien, D, Davidge, ST. Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring. FASEB J. 2006; 20, 12511253.
94.Hauton, D, Ousley, V. Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density. BMC Cardiovasc Disord. 2009; 9, 1.
95.Rueda-Clausen, CF, Morton, JS, Davidge, ST. Effects of hypoxia-induced intrauterine growth restriction on cardiopulmonary structure and function during adulthood. Cardiovasc Res. 2009; 81, 713722.
96.Rueda-Clausen, CF, Morton, JS, Lopaschuk, GD, Davidge, ST. Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc Res. 2011; 90, 285294.
97.Rueda-Clausen, CF, Morton, JS, Dolinsky, VW, Dyck, JR, Davidge, ST. Synergistic effects of prenatal hypoxia and postnatal high-fat diet in the development of cardiovascular pathology in young rats. Am J Physiol Regul Integr Comp Physiol. 2012; 303, R418R426.
98.Hauton, D. Hypoxia in early pregnancy induces cardiac dysfunction in adult offspring of Rattus norvegicus, a non-hypoxia-adapted species. Comp Biochem Physiol A Mol Integr Physiol. 2012; 163, 278285.
99.Giussani, DA, Camm, EJ, Niu, Y, et al. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One. 2012; 7, e31017.
100.Salem, R, Denault, AY, Couture, P, et al. Left ventricular end-diastolic pressure is a predictor of mortality in cardiac surgery independently of left ventricular ejection fraction. Br J Anaesth. 2006; 97, 292297.
101.Danson, EJ, Li, D, Wang, L, Dawson, TA, Paterson, DJ. Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J Mol Cell Cardiol. 2009; 46, 482489.
102.Bristow, MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2002; 101, 558569.
103.Ream, M, Ray, AM, Chandra, R, Chikaraishi, DM. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol. 2008; 295, R583R595.
104.Ruijtenbeek, K, Kessels, CG, Janssen, BJ, et al. Chronic moderate hypoxia during in ovo development alters arterial reactivity in chickens. Pflugers Arch. 2003; 447, 158167. 1.
105.Morton, JS, Rueda-Clausen, CF, Davidge, ST. Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted. Am J Physiol Regul Integr Comp Physiol. 2010; 298, R930R938.
106.Morton, JS, Rueda-Clausen, CF, Davidge, ST. Flow-mediated vasodilation is impaired in adult rat offspring exposed to prenatal hypoxia. J Appl Physiol. 2011; 110, 10731082.
107.Leeson, CP, Whincup, PH, Cook, DG, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation. 1997; 96, 22332238.
108.Leeson, CP, Kattenhorn, M, Morley, R, Lucas, A, Deanfield, JE. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001; 103, 12641268.
109.Camm, EJ, Martin-Gronert, MS, Wright, NL, et al. Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring. FASEB J. 2011; 25, 420427.
110.Rueda-Clausen, CF, Dolinsky, VW, Morton, JS, et al. Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome. Diabetes. 2011; 60, 507516.
111.Dolinsky, VW, Rueda-Clausen, CF, Morton, JS, Davidge, ST, Dyck, JRB. Continued postnatal administration of resveratrol prevents diet-induced metabolic syndrome in offspring born growth restricted. Diabetes. 2011; 60, 22742284.
112.Nuyt, AM. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond). 2008; 114, 117.
113.Davidge, ST, Morton, JS, Rueda-Clausen, CF. Oxygen and perinatal origins of adulthood diseases: is oxidative stress the unifying element? Hypertension. 2008; 52, 808810.
114.Thompson, LP, Al-Hasan, Y. Impact of oxidative stress in fetal programming. J Pregnancy. 2012; 2012, 582748.
115.Halliwell, B, Gutteridge, JMC. Free Radicals in Biology and Medicine, 2004. Oxford University Press: Oxford, UK.
116.Xiong, F, Xiao, D, Zhang, L. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production. FASEB J. 2012; 26, 27532763.
117.Hashimoto, K, Pinkas, G, Evans, L, et al. Protective effect of N-acetylcysteine on liver damage during chronic intrauterine hypoxia in fetal guinea pig. Reprod Sci. 2012; 19, 10011009.
118.Parraguez, VH, Atlagich, M, Araneda, O, et al. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: comparative study in high and low altitude native sheep. Reprod Fertil Dev. 2011; 23, 285296.
119.Richter, HG, Camm, EJ, Modi, BN, et al. Ascorbate prevents placental oxidative stress and enhances birth weight in hypoxic pregnancy in rats. J Physiol. 2012; 590(Pt 6), 13771387.
120.Bourque, SL, Dolinsky, VW, Dyck, JR, Davidge, ST. Maternal resveratrol treatment during pregnancy improves adverse fetal outcomes in a rat model of severe hypoxia. Placenta. 2012; 33, 449452.
121.Richter, HG, Hansell, JA, Raut, S, Giussani, DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009; 46, 357364.
122.Lemley, CO, Meyer, AM, Camacho, LE, et al. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2012; 302, R454R467.
123.Stanley, JL, Andersson, IJ, Poudel, R, et al. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model. Hypertension. 2012; 59, 10211028.
124.Stanley, JL, Andersson, IJ, Hirt, CJ, et al. Effect of the anti-oxidant tempol on fetal growth in a mouse model of fetal growth restriction. Biol Reprod. 2012; 87, 251258.
125.Baur, JA, Sinclair, DA. Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery. 2006; 5, 493506.
126.Baur, JA, Pearson, KJ, Price, NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444, 337342.
127.Niu, Y, Allison, BJ, Kane, AD, et al. Intergenerational inheritance of cardiovascular disease risk induced by chronic fetal hypoxia. Society for Gynecologic Investigation, 60th Annual Scientific Meeting, March 20–23, 2013, Orlando, FL, USA.

Keywords

Related content

Powered by UNSILO

Developmental programming of cardiovascular disease by prenatal hypoxia

  • D. A. Giussani (a1) and S. T. Davidge (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.