Skip to main content Accessibility help

Causal role of group B Streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments

  • M.-J. Allard (a1), M.-E. Brochu (a2), J. D. Bergeron (a2), M. Segura (a3) and G. Sébire (a1) (a2)...


Chorioamnionitis and intrauterine growth retardation (IUGR) are risk factors for cerebral palsy (CP). Common bacteria isolated in chorioamnionitis include group B Streptococcus (GBS) serotypes Ia and III. Little is known about the impact of placental inflammation induced by different bacteria, including different GBS strains. We aimed to test the impact of chorioamnionitis induced by two common GBS serotypes (GBSIa and GBSIII) on growth and neuromotor outcomes in the progeny. Dams were exposed at the end of gestation to either saline, inactivated GBSIa or GBSIII. Inactivated GBS bacteria invaded placentas and triggered a chorioamnionitis featured by massive polymorphonuclear cell infiltrations. Offspring exposed to GBSIII – but not to GBSIa – developed IUGR, persisting beyond adolescent age. Male rats in utero exposed to GBSIII traveled a lower distance in the Open Field test, which was correlating with their level of IUGR. GBSIII-exposed rats presented decreased startle responses to acoustic stimuli beyond adolescent age. GBS-exposed rats displayed a dysmyelinated white matter in the corpus callosum adjacent to thinner primary motor cortices. A decreased density of microglial cells was detected in the mature corpus callosum of GBSIII-exposed males – but not females – which was correlating positively with the primary motor cortex thickness. Altogether, our results demonstrate a causal link between pathogen-induced acute chorioamnionitis and (1) IUGR, (2) serotype- and sex-specific neuromotor impairments and (3) abnormal development of primary motor cortices, dysmyelinated white matter and decreased density of microglial cells.


Corresponding author

Address for correspondence: Dr G. Sébire, Research Institute of the McGill University Health Centre – Glen site, 1001, Decarie Boulevard, Montreal, QC, Canada H4A 3J1. E-mail:


Hide All
1.Tita, ATN, Andrews, WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010; 37, 339354.
2.Sperling, RS, Newton, E, Gibbs, RS. Intraamniotic infection in low-birth-weight infants. J Infect Dis. 1988; 157, 113117.
3.Pugni, L, Pietrasanta, C, Acaia, B, et al. Chorioamnionitis and neonatal outcome in preterm infants: a clinical overview. J Matern Fetal Neonatal Med. 2016; 29, 15251529.
4.Galinsky, R, Polglase, GR, Hooper, SB, Black, MJ, Moss, TJM. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy. 2013; 2013, 412831.
5.Ruff, CA, Faulkner, SD, Rumajogee, P, et al. The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents. PLoS One. 2017; 12, e0184653.
6.Tolcos, M, Petratos, S, Hirst, JJ, et al. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants? Prog Neurobiol. 2017; 154, 6277.
7.Spencer, SJ, Meyer, U. Perinatal programming by inflammation. Brain Behav Immun. 2017; 63, 17.
8.Schendel, DE, Schuchat, A, Thorsen, P. Public health issues related to infection in pregnancy and cerebral palsy. Ment Retard Dev Disabil Res Rev. 2002; 8, 3945.
9.Romero, R, Gomez, R, Ghezzi, F, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol. 1998; 179, 186193.
10.Zhang, Q, Lu, HY, Wang, JX, et al. Relationship between placental inflammation and fetal inflammatory response syndrome and brain injury in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi. 2015; 17, 217221.
11.Gotsch, F, Romero, R, Kusanovic, JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007; 50, 652683.
12.Patras, KA, Nizet, V. Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. Front Pediatr. 2018; 6, 27.
13.Regan, JA, Klebanoff, MA, Nugent, RP, et al. Colonization with group B streptococci in pregnancy and adverse outcome. Am J Obstet Gynecol. 1996; 174, 13541360.
14.Teatero, S, Ferrieri, P, Martin, I, et al. Serotype distribution, population structure, and antimicrobial resistance of group b streptococcus strains recovered from colonized pregnant women. J Clin Microbiol. 2017; 55, 412422.
15.Lu, B, Wu, J, Chen, X, et al. Microbiological and clinical characteristics of Group B Streptococcus isolates causing materno-neonatal infections: high prevalence of CC17/PI-1 and PI-2b sublineage in neonatal infections. J Med Microbiol. 2018; 67, 15511559.
16.O’Riordan, K, Lee, JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004; 17, 218234.
17.Lemire, P, Houde, M, Lecours, MP, Fittipaldi, N, Segura, M. Role of capsular polysaccharide in Group B Streptococccus interactions with dendritic cells. Microbes Infect. 2012; 14, 10641076.
18.Joubrel, C, Tazi, A, Six, A, et al. Group B streptococcus neonatal invasive infections, France 2007-2012. Clin Microbiol Infect. 2015; 21, 910916.
19.Périchon, B, Szili, N, du Merle, L, et al. Regulation of PI-2b pilus expression in hypervirulent Streptococcus agalactiae ST-17 BM110. PLoS One. 2017; 12, e0169840.
20.Andrade, EB, Magalhães, A, Puga, A, et al. A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection. Nat Commun. 2018; 9, 3138.
21.Allard, M-J, Bergeron, JD, Baharnoori, M, et al. A sexually dichotomous, autistic-like phenotype is induced by Group B Streptococcus maternofetal immune activation. Autism Res. 2017; 10, 233245.
22.Bergeron, J, Gerges, N, Guiraut, C, et al. Activation of the IL-1β/CXCL1/MMP-10 axis in chorioamnionitis induced by inactivated Group B Streptococcus. Placenta. 2016; 47, 116123.
23.Bergeron, JDL, Deslauriers, J, Grignon, S, et al. White matter injury and autistic-like behavior predominantly affecting male rat offspring exposed to group B streptococcal maternal inflammation. Dev Neurosci. 2013; 35, 504515.
24.Lee, JC, Perez, NE, Hopkins, CA, Pier, GB. Purified capsular polysaccharide-induced immunity to Staphylococcus aureus infection. J Infect Dis. 1988; 157, 723730.
25.Tobias, J, Svennerholm, AM, Carlin, NI, Lebens, M, Holmgren, J. Construction of a non-toxigenic Escherichia coli oral vaccine strain expressing large amounts of CS6 and inducing strong intestinal and serum anti-CS6 antibody responses in mice. Vaccine. 2011; 29, 88638869.
26.Simon, P, Dupuis, R, Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994; 61, 5964.
27.Deslauriers, J, Racine, W, Sarret, P, Grignon, S. Preventive effect of α-lipoic acid on prepulse inhibition deficits in a juvenile two-hit model of schizophrenia. Neuroscience. 2014; 272, 261270.
28.Porambo, M, Phillips, AW, Marx, J, et al. Transplanted glial restricted precursor cells improve neurobehavioral and neuropathological outcomes in a mouse model of neonatal white matter injury despite limited cell survival. Glia. 2015; 63, 452465.
29.Paxinos, G, Watson, C, Calabrese, E, Badea, A. MRI/DTI Atlas of the Rat Brain, 2015. Academic Press: Cambridge, MA.
30.Brochu, M-E, Girard, S, Lavoie, K, Sébire, G. Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation. 2011; 8, 55.
31.Wixey, JA, Chand, KK, Colditz, PB, Bjorkman, ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta. 2017; 54, 117154.
32.Blair, EM, Nelson, KB. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. Am J Obstet Gynecol. 2015; 212, 520.e1–7.
33.Dupin, R, Laurent, JP, Stauder, JE, Saliba, E. Auditory attention processing in 5-year-old children born preterm: evidence from event-related potentials. Dev Med Child Neurol. 2000; 42, 476480.
34.Ferrari, A, Sghedoni, A, Alboresi, S, Pedroni, E, Lombardi, F. New definitions of 6 clinical signs of perceptual disorder in children with cerebral palsy: an observational study through reliability measures. Eur J Phys Rehabil Med. 2014; 50, 709716.
35.Squarzoni, P, Thion, MS, Garel, S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci. 2015; 9, 238.
36.Paolicelli, RC, Ferretti, MT. Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front Synaptic Neurosci. 2017; 9, 9.
37.Tolsa, CB, Zimine, S, Warfield, SK, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res. 2004; 56, 132138.
38.Hagemeyer, N, Hanft, KM, Akriditou, MA, et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017; 134, 441458.
39.Winram, SB, Jonas, M, Chi, E, Rubens, CE. Characterization of group B streptococcal invasion of human chorion and amnion epithelial cells in vitro. Infect Immun. 1998; 66, 49324941.
40.Lemire, P, Roy, D, Fittipaldi, N, et al. Implication of TLR- but not of NOD2-signaling pathways in dendritic cell activation by group B Streptococcus serotypes III and V. PLoS One. 2014; 9, e113940.
41.Russell, NJ, Seale, AC, O’Driscoll, M, et al. Maternal Colonization With Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017; 65, S100S111.
42.Gilman-Sachs, A, Dambaeva, S, Salazar Garcia, MD, et al. Inflammation induced preterm labor and birth. J Reprod Immunol. 2018; 129, 5358.
43.Kemp, MW. Preterm birth, intrauterine infection, and fetal inflammation. Front Immunol. 2014; 5, 574.
44.Wang, X, Rousset, CI, Hagberg, H, Mallard, C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med. 2006; 11, 343353.
45.Boveri, M, Kinsner, A, Berezowski, V, et al. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience. 2006; 137, 11931209.


Type Description Title
Supplementary materials

Allard et al. supplementary material
Table S1

 Word (39 KB)
39 KB

Causal role of group B Streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments

  • M.-J. Allard (a1), M.-E. Brochu (a2), J. D. Bergeron (a2), M. Segura (a3) and G. Sébire (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed