Skip to main content Accessibility help

Body composition in male rats subjected to early weaning and treated with diet containing flour or flaxseed oil after 21 days until 60 days


The aim of this study was analyzed if the flour or flaxseed oil treatment contributes to body composition in male rats subjected to early weaning. Pups were weaned for separation from mother at 14 (early weaning, EW) and 21 days (control, C). At 21 days, part of the pups was evaluated (C21 v. EW21). After 21 days, control (C60) was fed with control diet. EW was divided in control (EWC60); flaxseed flour (EWFF60); flaxseed oil (EWFO60) diets until 60 days. Body mass, length and body composition by dual-energy X-ray absorptiometry were determined. EW21 (v. C21) and EWC60 (v. C60 and EWFF60) showed lower (P<0.05) mass, length and body composition. EWFO60 (v. C60 and EWFF60) showed lower (P<0.05) body mass and length, body and trunk lean mass, bone mineral density and content and bone area. Flaxseed flour, in comparison with flaxseed oil, contributes to recovery of body composition after early weaning.


Corresponding author

*Address for correspondence: C. A. Soares da Costa, Experimental Nutrition Laboratory, College of Nutrition, Federal Fluminense University, Rua Mário Santos Braga, 30, Niterói, RJ 24015-110, Brazil. (Email


Hide All
1. Gianni, ML, Roggero, P, Orsi, A, et al. Body composition changes in the first 6 months of life according to method of feeding. J Hum Lact. 2014; 30, 148155.
2. Arenz, S, Ruckerl, R, Koletzko, B, et al. Breast-feeding and childhood obesity – a systematic review. Int J Obes Relat Metab Disord. 2004; 28, 12471256.
3. Cooper, C, Westlake, S, Harvey, N, et al. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2006; 17, 337347.
4. World Health Organization (WHO). Global Strategy for Infant and Young Child Feeding. 2003. WHO: Geneva, Switzerland.
5. Younes-Rapozo, V, de Moura, EG, Lima, NS, et al. Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood. Br J Nutr. 2012; 108, 22862295.
6. Nobre, JL, Lisboa, PC, Lima, NS, et al. Calcium supplementation prevents obesity, hyperleptinaemia and hyperglycaemia in adult rats programmed by early weaning. Br J Nutr. 2012; 107, 979988.
7. Kim, K, Nam, YA, Kim, HS, et al. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol. 2014; 70, 163178.
8. Goyal, A, Sharma, V, Upadhyay, N, et al. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014; 51, 16331653.
9. Leite, CDFC, Vicente, GC, Suzuki, A, et al. Effects of flaxseed on rat milk creamatocrit and its contribution to offspring body growth. J Pediatr (Rio J). 2012; 88, 7478.
10. Ribeiro, DC, da Silva, PCA, Pereira, AD, et al. Assessments of body composition and bone parameters of lactating rats treated with diet containing flaxseed meal (linum usitatissinum) during post-weaning period. Nutr Hosp. 2014; 30, 366371.
11. Fishbeck, KL, Rasmussen, KM. Effect of repeated cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rat. J Nutr. 1987; 117, 19671975.
12. Reeves, PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 1997; 127, 838841.
13. Costa, CAS, Carlos, AS, Gonzalez, GP, et al. Diet containing low n-6/n-3 polyunsaturated fatty acids ratio, provided by canola oil, alters body composition and bone quality in young rats. Eur J Nutr. 2012; 51, 191198.
14. Lukaski, HC, Hall, CB, Marchello, MJ, et al. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors. Nutrition. 2001; 17, 607613.
15. Pessanha, CR, Boueri, BFC, da Costa, LR, et al. Brains development in male rats subjected to early weaning and treated with diet containing flour or flaxseed oil after 21 days until 60 days. J Dev Orig Health Dis. 2015; 30, 14.
16. Roszkowska, R, Taranta-Janusz, K, Tenderenda-Banasiuk, E, Wasilewska, A. The effects of breastfeeding on serum asymmetric dimethylarginine levels and body composition in children. Breastffed Med. 2015; 10, 3844.
17. Oliveira, LS, Silva, LP, Silva, AI, et al. Effects of early weaning on the circadian rhythm and behavioral satiety sequence in rats. LS Behav Processes. 2011; 86, 119124.
18. Costa, CAS, Alves, EG, Gonzalez, GPL, et al. Evaluation of body development, fat mass and lipid profile in rats fed with high-PUFA and -MUFA diets, after neonatal malnutrition. Br J Nutr. 2009; 101, 16391644.
19. Soriguer, F, Moreno, F, Rojo-Martínez, G, et al. Redistribution of abdominal fat after a period of food restriction in rats is related to the type of dietary fat. Br J Nutr. 2003; 89, 115122.
20. Ozanne, SE, Lewis, R, Jennings, BJ, Hales, N. Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci (Lond). 2004; 106, 141145.
21. Morgane, PJ, Austin-Lafrance, R, Bronzino, J, et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev. 1993; 17, 91128.
22. Howe, P, Buckley, J. Metabolic health benefits of long-chain omega-3 polyunsaturated fatty acids. Mil Med. 2014; 179, 138143.
23. Farina, EK, Kiel, DP, Roubenoff, R, et al. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2011; 93, 11421151.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed