Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-nbrzn Total loading time: 0.482 Render date: 2021-04-15T23:14:00.881Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity

Published online by Cambridge University Press:  18 September 2015

S. A. Johnson
Affiliation:
Bond Life Sciences Center, University of Missouri, Columbia, MO, USA Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
M. S. Painter
Affiliation:
Bond Life Sciences Center, University of Missouri, Columbia, MO, USA Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
A. B. Javurek
Affiliation:
Bond Life Sciences Center, University of Missouri, Columbia, MO, USA Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
M. R. Ellersieck
Affiliation:
Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO, USA
C. E. Wiedmeyer
Affiliation:
Veterinary Medical Diagnostic Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
J. P. Thyfault
Affiliation:
Department of Nutrition and Exercise Physiology, Research Service-Harry S. Truman Memorial Veterans Medical Center, Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, MO, USA Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS, USA
C. S. Rosenfeld
Affiliation:
Bond Life Sciences Center, University of Missouri, Columbia, MO, USA Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA Genetics Area Program, University of Missouri, Columbia, MO, USA Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
Corresponding
E-mail address:

Abstract

Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications.

Type
Original Article
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. CDC Centers for Disease Control and Prevention, Division of Nutrition, Physical Activity, and Obesity; CDC 24/7: Saving Lives, Protecting People. Adult Obesity Facts. http://www.cdc.gov/obesity/data/adult.html.Google Scholar
2. Scully, T. Diabetes in numbers. Nature. 2012; 485, S2S3.CrossRefGoogle Scholar
3. Roundtable on Obesity Solutions; Food and Nutrition Board; Institute of Medicine. In The Current State of Obesity Solutions in the United States: Workshop Summary, 2014. National Academies Press: Washington, DC.Google Scholar
4. Brownson, RC, Boehmer, TK, Luke, DA. Declining rates of physical activity in the United States: what are the contributors? Annu Rev Public Health. 2005; 26, 421443.CrossRefGoogle ScholarPubMed
5. Gray, CE, Larouche, R, Barnes, JD, et al. Are we driving our kids to unhealthy habits? Results of the active healthy kids Canada 2013 report card on physical activity for children and youth. Int J Environ Res Public Health. 2014; 11, 60096020.CrossRefGoogle ScholarPubMed
6. Ziviani, J, Wadley, D, Ward, H, et al.. A place to play: socioeconomic and spatial factors in children’s physical activity. Aust Occup Ther J. 2008; 55, 211.CrossRefGoogle ScholarPubMed
7. Baillie-Hamilton, PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002; 8, 185192.CrossRefGoogle ScholarPubMed
8. Diamanti-Kandarakis, E, Bourguignon, JP, Giudice, LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009; 30, 293342.CrossRefGoogle Scholar
9. Galloway, T, Cipelli, R, Guralnick, J, et al. Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect. 2010; 118, 16031608.CrossRefGoogle ScholarPubMed
10. He, Y, Miao, M, Herrinton, LJ, et al. Bisphenol A levels in blood and urine in a Chinese population and the personal factors affecting the levels. Environ Res. 2009; 109, 629633.CrossRefGoogle Scholar
11. Biedermann, S, Tschudin, P, Grob, K. Transfer of bisphenol A from thermal printer paper to the skin. Anal Bioanal Chem. 2010; 398, 571576.CrossRefGoogle Scholar
12. Grand View Research. Global bisphenol A (BPA) market by appliation (appliances, automotive, consumer, construction, electrical & electronics) expected to reach USD 20.03 billion by 2020. Retrieved 24 July 2014 from http://www.digitaljournal.com/pr/2009287.Google Scholar
13. Environment Canada. Screening assessment for the challenge phenol, 4,4’ -(1-methylethylidene)bis-(bisphenol A) Chemical Abstracts Service Registry Number 80-05-7. (ed. Ministers of the Environment and of Health), 2008; pp. 1–107.Google Scholar
14. Vandenberg, LN, Maffini, MV, Sonnenschein, C, Rubin, BS, Soto, AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009; 30, 7595.CrossRefGoogle ScholarPubMed
15. Calafat, AM, Ye, X, Wong, LY, Reidy, JA, Needham, LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008; 116, 3944.CrossRefGoogle ScholarPubMed
16. vom Saal, FS, Akingbemi, BT, Belcher, SM, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007; 24, 131138.CrossRefGoogle Scholar
17. Vandenberg, LN, Hauser, R, Marcus, M, Olea, N, Welshons, WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007; 24, 139177.CrossRefGoogle Scholar
19. Balakrishnan, B, Henare, K, Thorstensen, EB, Ponnampalam, AP, Mitchell, MD. Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010; 202, 393, e391e397.CrossRefGoogle ScholarPubMed
20. Ikezuki, Y, Tsutsumi, O, Takai, Y, Kamei, Y, Taketani, Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002; 17, 28392841.CrossRefGoogle ScholarPubMed
21. Kawamoto, Y, Matsuyama, W, Wada, M, et al. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice. Toxicol Appl Pharmacol. 2007; 224, 182191.CrossRefGoogle ScholarPubMed
22. Nishikawa, M, Iwano, H, Yanagisawa, R, et al. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect. 2010; 118, 11961203.CrossRefGoogle ScholarPubMed
23. Vandenberg, LN, Chahoud, I, Heindel, JJ, et al.. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010; 118, 10551070.CrossRefGoogle ScholarPubMed
24. Bhandari, R, Xiao, J, Shankar, A. Urinary bisphenol A and obesity in U.S. children. Am J Epidemiol. 2013; 177, 12631270.CrossRefGoogle ScholarPubMed
25. Braun, JM, Lanphear, BP, Calafat, AM, et al. Early-life bisphenol A exposure and child body mass index: a prospective cohort study. Environ Health Perspect. 2014; 122, 12391245.Google ScholarPubMed
26. Carwile, JL, Michels, KB. Urinary bisphenol A and obesity: NHANES 2003-2006. Environ Res. 2011; 111, 825830.CrossRefGoogle ScholarPubMed
27. Fenichel, P, Chevalier, N, Brucker-Davis, F. Bisphenol A: an endocrine and metabolic disruptor. Ann Endocrinol (Paris). 2013; 74, 211220.CrossRefGoogle ScholarPubMed
28. Khalil, N, Ebert, JR, Wang, L, et al. Bisphenol A and cardiometabolic risk factors in obese children. Sci Total Environ. 2014; 470–471, 726732.CrossRefGoogle ScholarPubMed
29. Ko, A, Hwang, MS, Park, JH, et al.. Association between urinary bisphenol A and waist circumference in Korean adults. Toxicol Res. 2014; 30, 3944.CrossRefGoogle ScholarPubMed
30. Li, DK, Miao, M, Zhou, Z, et al. Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS One. 2013; 8, e65399.CrossRefGoogle ScholarPubMed
31. Mackay, H, Patterson, ZR, Khazall, R, et al.. Organizational effects of perinatal exposure to bisphenol-A and diethylstilbestrol on arcuate nucleus circuitry controlling food intake and energy expenditure in male and female CD-1 mice. Endocrinology. 2013; 154, 14651475.CrossRefGoogle ScholarPubMed
32. Manikkam, M, Tracey, R, Guerrero-Bosagna, C, Skinner, MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013; 8, e55387.CrossRefGoogle ScholarPubMed
33. Marmugi, A, Lasserre, F, Beuzelin, D, et al. Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice. Toxicology. 2014; 325c, 133143.CrossRefGoogle Scholar
34. Schneyer, A. Getting big on BPA: role for BPA in obesity? Endocrinology. 2011; 152, 33013303.CrossRefGoogle ScholarPubMed
35. Schug, TT, Janesick, A, Blumberg, B, Heindel, JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011; 127, 204215.CrossRefGoogle ScholarPubMed
36. Shankar, A, Teppala, S, Sabanayagam, C. Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003-2008. ISRN Endocrinol. 2012; 2012, 965243.CrossRefGoogle ScholarPubMed
37. Somm, E, Schwitzgebel, VM, Toulotte, A, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect. 2009; 117, 15491555.CrossRefGoogle ScholarPubMed
38. Trasande, L, Attina, TM, Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 2012; 308, 11131121.CrossRefGoogle ScholarPubMed
39. Valvi, D, Casas, M, Mendez, MA, et al. Prenatal bisphenol a urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology. 2013; 24, 791799.CrossRefGoogle ScholarPubMed
40. van Esterik, JC, Dolle, ME, Lamoree, MH, et al. Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology. 2014; 321, 4052.CrossRefGoogle ScholarPubMed
41. Wang, T, Li, M, Chen, B, et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab. 2012; 97, E223E227.CrossRefGoogle ScholarPubMed
42. Wei, J, Lin, Y, Li, Y, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011; 152, 30493061.CrossRefGoogle ScholarPubMed
43. Heindel, JJ, Schug, TT. The obesogen hypothesis: current status and implications for human health. Curr Enviro Health Rpt. 2014; 1, 333340.CrossRefGoogle Scholar
44. Garcia-Arevalo, M, Alonso-Magdalena, P, Rebelo Dos Santos, J, et al. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One. 2014; 9, e100214.CrossRefGoogle ScholarPubMed
45. Alonso-Magdalena, P, Garcia-Arevalo, M, Quesada, I, Nadal, A. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology. 2015; 156, 16591670.CrossRefGoogle ScholarPubMed
46. Miyawaki, J, Sakayama, K, Kato, H, Yamamoto, H, Masuno, H. Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb. 2007; 14, 245252.CrossRefGoogle ScholarPubMed
47. Anderson, OS, Peterson, KE, Sanchez, BN, et al. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J. 2013; 27, 17841792.CrossRefGoogle ScholarPubMed
48. Harley, KG, Aguilar Schall, R, Chevrier, J, et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect. 2013; 121, 514520.Google ScholarPubMed
49. Ryan, KK, Haller, AM, Sorrell, JE, et al.. Perinatal exposure to bisphenol-A and the development of metabolic syndrome in CD-1 mice. Endocrinology. 2010; 151, 26032612.CrossRefGoogle ScholarPubMed
50. Wang, J, Sun, B, Hou, M, Pan, X, Li, X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11beta-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int J Obes (Lond). 2013; 37, 9991005.CrossRefGoogle ScholarPubMed
51. Ohlstein, J, Strong, AL, McLachlan, JA, et al.. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. J Mol Endocrinol. 2014; 53, 345353.CrossRefGoogle ScholarPubMed
52. Boucher, JG, Husain, M, Rowan-Carroll, A, et al.. Identification of mechanisms of action of bisphenol A-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014; 22, 23332343.CrossRefGoogle ScholarPubMed
53. Boucher, JG, Boudreau, A, Atlas, E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr Diabetes. 2014; 4, e102.CrossRefGoogle ScholarPubMed
54. Bastos Sales, L, Kamstra, JH, Cenijn, PH, et al.. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol In Vitro. 2013; 27, 16341643.CrossRefGoogle ScholarPubMed
55. Hugo, ER, Brandebourg, TD, Woo, JG, et al.. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008; 116, 16421647.CrossRefGoogle ScholarPubMed
56. Ronn, M, Lind, L, Orberg, J, et al. Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere. 2014; 112, 4248.CrossRefGoogle ScholarPubMed
57. Perez-Leighton, CE, Boland, K, Teske, JA, Billington, C, Kotz, CM. Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab. 2012; 303, E865E874.CrossRefGoogle ScholarPubMed
58. Perez-Leighton, CE, Grace, M, Billington, CJ, Kotz, CM. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiol Behav. 2014; 135, 104111.CrossRefGoogle ScholarPubMed
59. Perez-Leighton, CE, Boland, K, Billington, CJ, Kotz, CM. High and low activity rats: elevated intrinsic physical activity drives resistance to diet-induced obesity in non-bred rats. Obesity (Silver Spring). 2013; 21, 353360.CrossRefGoogle ScholarPubMed
60. Bauer, UE, Briss, PA, Goodman, RA, Bowman, BA. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet. 2014; 384, 4552.CrossRefGoogle ScholarPubMed
61. Garcia, LM, da Silva, KS, Del Duca, GF, da Costa, FF, Nahas, MV. Sedentary behaviors, leisure-time physical inactivity, and chronic diseases in Brazilian workers: a cross sectional study. J Phys Act Health. 2014; 11, 16221634.CrossRefGoogle ScholarPubMed
62. Goedecke, JH, Micklesfield, LK. The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes. Med Sport Sci. 2014; 60, 8293.CrossRefGoogle ScholarPubMed
63. Ward, PW. Inactivity, not gluttony, causes obesity. BMJ. 2014; 348, g2717.CrossRefGoogle Scholar
64. Booth, FW, Roberts, CK, Laye, MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012; 2, 11431211.Google ScholarPubMed
65. Knight, JA. Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci. 2012; 42, 320337.Google ScholarPubMed
66. Schottenfeld, D, Beebe-Dimmer, JL, Buffler, PA, Omenn, GS. Current perspective on the global and United States cancer burden attributable to lifestyle and environmental risk factors. Annu Rev Public Health. 2013; 34, 97117.CrossRefGoogle ScholarPubMed
67. Booth, FW, Laye, MJ, Lees, SJ, Rector, RS, Thyfault, JP. Reduced physical activity and risk of chronic disease: the biology behind the consequences. Eur J Appl Physiol. 2008; 102, 381390.CrossRefGoogle ScholarPubMed
68. Bauman, AE, Reis, RS, Sallis, JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012; 380, 258271.CrossRefGoogle ScholarPubMed
69. Kelly, SA, Nehrenberg, DL, Hua, K, et al. Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiol Genomics. 2010; 40, 111120.CrossRefGoogle ScholarPubMed
70. Kelly, SA, Pomp, D. Genetic determinants of voluntary exercise. Trends Genet. 2013; 29, 348357.CrossRefGoogle ScholarPubMed
71. Roberts, MD, Brown, JD, Company, JM, et al. Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances. Am J Physiol Regul Integr Comp Physiol. 2013; 304, R1024R1035.CrossRefGoogle ScholarPubMed
72. Williams, SA, Jasarevic, E, Vandas, GM, et al. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model. PLoS One. 2013; 8, e55698.CrossRefGoogle ScholarPubMed
73. Jasarevic, E, Sieli, PT, Twellman, EE, et al. Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc Natl Acad Sci USA. 2011; 108, 1171511720.CrossRefGoogle ScholarPubMed
74. Jasarevic, E, Williams, SA, Vandas, GM, et al. Sex and dose-dependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Horm Behav. 2013; 63, 180189.CrossRefGoogle ScholarPubMed
75. Krugner-Higby, L, Shadoan, M, Carlson, C, et al. Type 2 diabetes mellitus, hyperlipidemia, and extremity lesions in California mice (Peromyscus californicus) fed commercial mouse diets. Comp Med. 2000; 50, 412418.Google ScholarPubMed
76. Sieli, PT, Jasarevic, E, Warzak, DA, et al. Comparison of serum bisphenol A concentrations in mice exposed to bisphenol A through the diet versus oral bolus exposure. Environ Health Perspect. 2011; 119, 12601265.CrossRefGoogle ScholarPubMed
77. vom Saal, FS, Richter, CA, Ruhlen, RR, et al.. The importance of appropriate controls, animal feed, and animal models in interpreting results from low-dose studies of bisphenol A. Birth Defects Res A Clin Mol Teratol. 2005; 73, 140145.CrossRefGoogle Scholar
79. Hong, J, Stubbins, RE, Smith, RR, Harvey, AE, Núñez, NP. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J. 2009; 8, 1111.CrossRefGoogle ScholarPubMed
80. Peromyscus genetic stock center, department of animal resources, University of South Carolina. http://stkctr.biol.sc.edu/wild-stock/p_calif.html.Google Scholar
81. Campi, KL, Jameson, CE, Trainor, BC. Sexual dimorphism in the brain of the monogamous California mouse (Peromyscus californicus). Brain Behav Evol. 2013; 81, 236249.CrossRefGoogle Scholar
82. Greenberg, GD, Laman-Maharg, A, Campi, KL, et al. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the Stria terminalis. Front Behav Neurosci. 2014; 7, 223.CrossRefGoogle ScholarPubMed
83. Steppan, S, Adkins, R, Anderson, J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol. 2004; 53, 533553.CrossRefGoogle ScholarPubMed
84. Jasarevic, E, Bailey, DH, Crossland, JP, et al. Evolution of monogamy, paternal investment, and female life history in Peromyscus . J Comp Psychol. 2013; 127, 91102.CrossRefGoogle ScholarPubMed
85. Rosenfeld, CS, Johnson, SA, Ellersieck, MR, Roberts, RM. Interactions between parents and parents and pups in the monogamous California mouse (Peromyscus californicus). PloS One. 2013; 8, e75725.CrossRefGoogle Scholar
86. Gubernick, DJ, Alberts, JR. The biparental care system of the California mouse, Peromyscus californicus. J Comp Psychol. 1987; 101, 169177.CrossRefGoogle ScholarPubMed
87. Alonso-Magdalena, P, Ropero, AB, Soriano, S, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol. 2012; 355, 201207.CrossRefGoogle ScholarPubMed
88. De Coster, S, van Larebeke, N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. J Environ Pub Health. 2012; 2012, 713696.Google ScholarPubMed
89. Rubin, BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011; 127, 2734.CrossRefGoogle ScholarPubMed
90. Galgani, JE, Moro, C, Ravussin, E. Metabolic flexibility and insulin resistance. Am J Physiol. 2008; 295, E1009E1017.Google ScholarPubMed
91. Thyfault, JP, Rector, RS, Noland, RC. Metabolic inflexibility in skeletal muscle: a prelude to the cardiometabolic syndrome? Journal of the CardioMetabolic Syndrome. 2006; 1, 184189.CrossRefGoogle ScholarPubMed
92. Rosenfeld, CS, Trainor, BC. Environmental health factors and sexually dimorphic differences in behavioral disruptions. Curr Environ Health Rep. 2014; 1, 287301.CrossRefGoogle ScholarPubMed
93. Rhodes, JS, Garland, T Jr, Gammie, SC. Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci. 2003; 117, 12431256.CrossRefGoogle ScholarPubMed
94. Waters, RP, Pringle, RB, Forster, GL, et al. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice. Brain Res. 2013; 1508, 922.CrossRefGoogle ScholarPubMed
95. Hill, LE, Droste, SK, Nutt, DJ, Linthorst, AC, Reul, JM. Voluntary exercise alters GABA(A) receptor subunit and glutamic acid decarboxylase-67 gene expression in the rat forebrain. J Psychopharmacol. 2010; 24, 745756.CrossRefGoogle ScholarPubMed
96. Meeusen, R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005; 10, 4951.Google ScholarPubMed
97. Tarr, BA, Kellaway, LA St, Clair Gibson, A, Russell, VA. Voluntary running distance is negatively correlated with striatal dopamine release in untrained rats. Behav Brain Res. 2004; 154, 493499.CrossRefGoogle ScholarPubMed
98. Kolb, EM, Rezende, EL, Holness, L, et al. Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. J Exp Biol. 2013; 216(Pt 3), 515523.CrossRefGoogle ScholarPubMed
99. Teske, JA, Perez-Leighton, CE, Billington, CJ, Kotz, CM. Role of the locus coeruleus in enhanced orexin A-induced spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol. 2013; 305, R1337R1345.CrossRefGoogle ScholarPubMed
100. Chen, F, Zhou, L, Bai, Y, Zhou, R, Chen, L. Sex differences in the adult HPA axis and affective behaviors are altered by perinatal exposure to a low dose of bisphenol A. Brain Res. 2014; 1571, 1224.CrossRefGoogle Scholar
101. Elsworth, JD, Jentsch, JD, Vandevoort, CA, et al. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology. 2013; 35, 113120.CrossRefGoogle ScholarPubMed
102. Kunz, N, Camm, EJ, Somm, E, et al. Developmental and metabolic brain alterations in rats exposed to bisphenol A during gestation and lactation. Int J Dev Neurosci. 2011; 29, 3743.CrossRefGoogle ScholarPubMed
103. Leranth, C, Hajszan, T, Szigeti-Buck, K, Bober, J, MacLusky, NJ. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA. 2008; 105, 1418714191.CrossRefGoogle ScholarPubMed
104. Tiwari, SK, Agarwal, S, Chauhan, LK, Mishra, VN, Chaturvedi, RK. Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol Neurobiol. 2014; 51, 13951416.CrossRefGoogle ScholarPubMed
105. Xu, XB, He, Y, Song, C, et al. Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus. 2014; 24, 15701580.CrossRefGoogle ScholarPubMed
106. Zhang, Q, Xu, X, Li, T, et al.. Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. Horm Behav. 2014; 65, 106113.CrossRefGoogle ScholarPubMed
107. Cao, J, Joyner, L, Mickens, JA, Leyrer, SM, Patisaul, HB. Sex-specific Esr2 mRNA expression in the rat hypothalamus and amygdala is altered by neonatal bisphenol A exposure. Reproduction. 2014; 147, 537554.CrossRefGoogle ScholarPubMed
108. Cao, J, Rebuli, ME, Rogers, J, et al. Prenatal bisphenol A exposure alters sex-specific estrogen receptor expression in the neonatal rat hypothalamus and amygdala. Toxicol Sci. 2013; 133, 157173.CrossRefGoogle ScholarPubMed
109. Kundakovic, M, Gudsnuk, K, Franks, B, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA. 2013; 110, 99569961.CrossRefGoogle ScholarPubMed
110. McCaffrey, KA, Jones, B, Mabrey, N, et al.. Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation. Neurotoxicology. 2013; 36, 5562.CrossRefGoogle Scholar
111. Panagiotidou, E, Zerva, S, Mitsiou, DJ, Alexis, MN, Kitraki, E. Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J Endocrinol. 2014; 220, 207218.CrossRefGoogle ScholarPubMed
112. Tiwari, SK, Agarwal, S, Chauhan, LK, Mishra, VN, Chaturvedi, RK. Bisphenol-A impairs myelination potential during development in the hippocampus of the rat brain. Mol Neurobiol. 2014; 51, 13951416.CrossRefGoogle ScholarPubMed
113. Viberg, H, Lee, I. A single exposure to bisphenol A alters the levels of important neuroproteins in adult male and female mice. Neurotoxicology. 2012; 33, 13901395.CrossRefGoogle ScholarPubMed
114. Xu, XB, He, Y, Song, C, et al. Bisphenol A regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus. 2014; 24, 15701580.CrossRefGoogle ScholarPubMed
115. Leranth, C, Szigeti-Buck, K, Maclusky, NJ, Hajszan, T. Bisphenol A prevents the synaptogenic response to testosterone in the brain of adult male rats. Endocrinology. 2008; 149, 988994.CrossRefGoogle ScholarPubMed
116. Narita, M, Miyagawa, K, Mizuo, K, Yoshida, T, Suzuki, T. Changes in central dopaminergic systems and morphine reward by prenatal and neonatal exposure to bisphenol-A in mice: evidence for the importance of exposure period. Addict Biol. 2007; 12, 167172.CrossRefGoogle ScholarPubMed
117. Nakamura, K, Itoh, K, Yoshimoto, K, Sugimoto, T, Fushiki, S. Prenatal and lactational exposure to low-doses of bisphenol A alters brain monoamine concentration in adult mice. Neurosci Lett. 2010; 484, 6670.CrossRefGoogle ScholarPubMed
118. Tian, YH, Baek, JH, Lee, SY, Jang, CG. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse. 2010; 64, 432439.CrossRefGoogle ScholarPubMed
119. Yaoi, T, Itoh, K, Nakamura, K, et al. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun. 2008; 376, 563567.CrossRefGoogle Scholar
120. Werme, M, Messer, C, Olson, L, et al. Delta FosB regulates wheel running. J Neurosci. 2002; 22, 81338138.Google ScholarPubMed
121. Alyea, RA, Watson, CS. Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17beta-estradiol. Environ Health Perspect. 2009; 117, 778783.CrossRefGoogle ScholarPubMed
122. Jones, DC, Miller, GW. The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol. 2008; 76, 569581.CrossRefGoogle ScholarPubMed
123. Matsuda, S, Saika, S, Amano, K, Shimizu, E, Sajiki, J. Changes in brain monoamine levels in neonatal rats exposed to bisphenol A at low doses. Chemosphere. 2010; 78, 894906.CrossRefGoogle ScholarPubMed
124. Nakamura, K, Itoh, K, Yoshimoto, K, Sugimoto, T, Fushiki, S. Prenatal and lactational exposure to low-doses of bisphenol A alters brain monoamine concentration in adult mice. Neurosci Lett. 2010; 484, 6670.CrossRefGoogle ScholarPubMed
125. Tanida, T, Warita, K, Ishihara, K, et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol Lett. 2009; 189, 4047.CrossRefGoogle ScholarPubMed
126. Zhou, R, Zhang, Z, Zhu, Y, Chen, L, Sokabe, M. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience. 2009; 159, 161171.CrossRefGoogle ScholarPubMed
127. Garland, T Jr, Schutz, H, Chappell, MA, et al. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol. 2011; 214(Pt 2), 206229.CrossRefGoogle ScholarPubMed
128. Chen, ZY, Jing, D, Bath, KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006; 314, 140143.CrossRefGoogle ScholarPubMed
129. Berchtold, NC, Kesslak, JP, Pike, CJ, Adlard, PA, Cotman, CW. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci. 2001; 14, 19922002.CrossRefGoogle ScholarPubMed
130. Teske, JA, Billington, CJ, Kotz, CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience. 2014; 256, 91100.CrossRefGoogle ScholarPubMed
131. Kotz, C, Nixon, J, Butterick, T, et al.. Brain orexin promotes obesity resistance. Ann N Y Acad Sci. 2012; 1264, 7286.CrossRefGoogle ScholarPubMed
132. Perez-Leighton, CE, Billington, CJ, Kotz, CM. Orexin modulation of adipose tissue. Biochim Biophys Acta. 2014; 1842, 440445.CrossRefGoogle ScholarPubMed
133. Nojima, K, Takata, T, Masuno, H. Prolonged exposure to a low-dose of bisphenol A increases spontaneous motor activity in adult male rats. J Physiol Sci. 2013; 63, 311315.CrossRefGoogle ScholarPubMed
134. Ishido, M, Yonemoto, J, Morita, M. Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett. 2007; 173, 6672.CrossRefGoogle ScholarPubMed
135. Farabollini, F, Porrini, S, Dessi-Fulgheri, F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999; 64, 687694.CrossRefGoogle ScholarPubMed
136. Baker, MS, Li, G, Kohorst, JJ, Waterland, RA. Fetal growth restriction promotes physical inactivity and obesity in female mice. Int J Obes (Lond). 2013; 39, 98104.CrossRefGoogle ScholarPubMed
137. Bodin, J, Bolling, AK, Samuelsen, M, et al. Long-term bisphenol A exposure accelerates insulitis development in diabetes-prone NOD mice. Immunopharmacol Immunotoxicol. 2013; 35, 349358.CrossRefGoogle ScholarPubMed
138. Moon, MK, Jeong, IK, Jung Oh, T, et al. Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J Endocrinol. 2015; 226, 3542.CrossRefGoogle ScholarPubMed

Johnson supplementary material

Figure S1

Image 16 MB

Johnson supplementary material

Figure S2

Image 3 MB

Johnson supplementary material

Figure S3

Image 2 MB

Johnson supplementary material

Figure S4

Image 1 MB

Johnson supplementary material

Figure S5

Image 1 MB

Johnson supplementary material

Figure S6

Image 2 MB

Johnson supplementary material

Figure S7

Image 3 MB

Johnson supplementary material

Table S1

File 15 KB

Johnson supplementary material

Table S2

File 16 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 21
Total number of PDF views: 111 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.