Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T13:54:56.134Z Has data issue: false hasContentIssue false

Peptide hydrolases of Lactobacillus casei: isolation and general properties of various peptidase activities

Published online by Cambridge University Press:  01 June 2009

Morsi El Soda
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
Michel J. Desmazeaud
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
J.-L. Bergère
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France

Summary

Discovery of an endopeptidase by gel chromatography and separation of 3 exopeptidases (a dipeptidase, an aminopeptidase and a specific carboxypeptidase) from Lactobacillus casei NCDO 151 by affinity chromatography is described. The 3 exopeptidases were strongly inhibited by the metal chelators EDTA and 1,10-phenanthroline but were reactivated with Co2+ and Mn2+. The pH optima for aminopeptidase, dipeptidase and carboxypeptidase activities were 6·5, 7·6 and 7·2, respectively. Maximum activity was obtained at 45 °C for the aminopeptidase, at 30 °C for the dipeptidase and at 40 °C for the carboxypeptidase.

The substrate specificities of the 3 enzymes were also studied. The properties of these 3 enzymes are compared with those of other bacteria.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baudet, P., Rössler, R. & Cherbuliez, E. (1960). Helvetica Chimica Acta 43, 1795.CrossRefGoogle Scholar
Behal, F. J. & Folds, J. D. (1967). Biochemical and Biophysical Research Communications 27, 344.CrossRefGoogle Scholar
Brandsaeter, E. & Nelson, F. E. (1956). Journal of Bacteriology 72, 73.CrossRefGoogle Scholar
Cordonnier, R. (1966). Annales de Technologic Agricole 15, supplement 1.Google Scholar
De Man, J. C., Rogosa, M. & Sharpe, M. E. (1960). Journal of Applied Bacteriology 23, 130.CrossRefGoogle Scholar
Desmazeaud, M. J. & Zevaco, C. (1977). Annales de Biologie animate, Biochitnie, Biophysique 17, 723.CrossRefGoogle Scholar
El Soda, M. (1976). Thesis, University of Caen, France.Google Scholar
El Soda, M., Bergère, J.-L. & Desmazeaud, M. J. (1978). Journal of Dairy Research 45, 519.CrossRefGoogle Scholar
Haley, E. E. (1968). Journal of Biological Chemistry 243, 5748.CrossRefGoogle Scholar
Matthews, D. M. & Payne, J. W. (1975). In Peptide Transport in Protein Nutrition, p. 1. (Eds Matthews, D. M. and Payne, J. W..) Amsterdam: North-Holland.Google Scholar
Moore, S. & Stein, W. H. (1954). Journal of Biological Chemistry 211, 907.CrossRefGoogle Scholar
Payne, J. W. (1976). Advances in Microbial Physiology 13, 55.CrossRefGoogle Scholar
Pfleiderer, G. (1970). Methods in Enzymology 19, 614.Google Scholar
Plancot, M. T. & Han, K. K. (1972). European Journal of Biochemistry 28, 327.CrossRefGoogle Scholar
Rabier, D. & Desmazeaud, M. J. (1973). Biochimie 55, 389.CrossRefGoogle Scholar