Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T12:08:05.978Z Has data issue: false hasContentIssue false

Metabolic engineering of Lactococcus lactis influence of the overproduction of lipase enzyme

Published online by Cambridge University Press:  24 September 2013

Mohammad Raftari
Affiliation:
Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM 43400, Serdang, Selangor, Malaysia
Sobhan Ghafourian
Affiliation:
Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
Fatimah Abu Bakar*
Affiliation:
Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM 43400, Serdang, Selangor, Malaysia
*
*For correspondence; e-mail: fatim@putra.upm.edu.my

Abstract

The dairy industry uses lipase extensively for hydrolysis of milk fat. Lipase is used in the modification of the fatty acid chain length, to enhance the flavours of various chesses. Therefore finding the unlimited source of lipase is a concern of dairy industry. Due to the importance of lipase, this study was an attempt to express the lipase from Burkholderia cepacia in Lactococcus lactis. To achieve this, a gene associated with lipase transport was amplified and subcloned in inducible pNZ8148 vector, and subsequently transformed into Lc. lactis NZ9000. The enzyme assay as well as SDS-PAGE and western blotting were carried out to analysis the recombinant lipase expression. Nucleotide sequencing of the DNA insert from the clone revealed that the lipase activity corresponded to an open reading frame consisting of 1092 bp coding for a 37·5-kDa size protein. Blue colour colonies on nile blue sulphate agar and sharp band on 37·5-kD size on SDS-PAGE and western blotting results confirm the successful expression of lipase by Lc. lactis. The protein assay also showed high expression, approximately 152·2 μg/ml.h, of lipase by recombinant Lc. lactis. The results indicate that Lc. lactis has high potential to overproduce the recombinant lipase which can be used commercially for industrially purposes.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, S & Pandey, A 1998 Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14 106910873.0.CO;2-K>CrossRefGoogle ScholarPubMed
Bolotin, A, Wincker, P, Mauger, S, Jaillon, O, Malarme, K, Weissenbach, J, Ehrlich, SD & Sorokin, A 2001 The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL1403. Genome Research 11 731753CrossRefGoogle ScholarPubMed
Bornscheuer, UT & Kazlauskas, RJ 1999 Hydrolases in Organic Synthesis: Regioand Stereolelective Biotransformations. Weinheim: Wiley-VCHGoogle Scholar
de Ruyter, PG, Kuipers, OP & de Vos, WM 1996 Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Applied and Environmental Microbiology 62 36623667Google Scholar
de Vos, WM 1999 Gene expression systems for lactic acid bacteria. Current Microbiology 2 289295Google Scholar
Hanniffy, S, Wiedermann, U, Repa, A, Mercenier, A, Daniel, C, Fioramonti, J, Tlaskolova, H, Kozakova, H, Israelsen, H, Madsen, S, Vrang, A, Hols, P, Delcour, J, Bron, P, Kleerebezem, M & Wells, J 2004 Potential and opportunities for use of recombinant lactic acid bacteria in human health. Advances in Applied Microbiology 56 164CrossRefGoogle ScholarPubMed
Holo, H & Nes, IF 1989 High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Applied and Environmental Microbiology 55 31193123Google Scholar
Hols, P, Kleerebezem, M, Schanck, AN, Ferain, T, Hugenholtz, J, Delcour, J & de Vos, WM 1999 Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology 17 588592Google Scholar
Hugenholtz, J, Kleerebezem, M, Starrenburg, M, Delcour, J, de Vos, W & Hols, P 2002 Lactococcus lactis as a cell factory for high-level diacetyl production. Applied and Environmental Microbiology 66 41124114Google Scholar
Jaeger, KE & Eggert, T 2002 Lipases for biotechnology. Current Opinion in Biotechnology 13 390397CrossRefGoogle ScholarPubMed
Jana, S & Deb, JK 2005 Strategies for efficient production of heterologous proteins in Escherichia coli. Applied Microbiology and Biotechnology 67 289298CrossRefGoogle ScholarPubMed
Kazlauskas, RJ and Weber, HK 1998 Improving hydrolases for organic synthesis. Current Opinion in Chemical Biology 2 121126Google Scholar
Klaenhammer, T, Altermann, E, Arigoni, F, Bolotin, A, Breidt, F, Broadbent, J, Cano, R, Chaillou, S, Deutscher, J, Gasson, M, van de Guchte, M, Guzzo, J, Hartke, A, Hawkins, T, Hols, P, Hutkins, R, Kleerebezem, M, Kok, J, Kuipers, O, Lubbers, M, Maguin, E, McKay, L, Mills, D, Nauta, A, Overbeek, R, Pel, H, Pridmore, D, Saier, M, van Sinderen, D, Sorokin, A, Steele, J, O'Sullivan, D, de Vos, W, Weimer, B, Zagorec, M & Siezen, R 2002 Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82 2958Google Scholar
Konings, WN, Kok, J, Kuipers, OP & Poolman, B 2000 Lactic acid bacteria: the bugs of the new millennium. Current Opinion in Microbiology 3 276282Google Scholar
Kuipers, OP, Rollema, HS, Siezen, RJ & de Vos, WM 1995 Lactococcal expression systems for protein engineering of nisin. Developments in Biological Standardization 85 605613Google Scholar
Kuipers, OP, de Ruyter, PG, Kleerebezem, M & de Vos, WM 1997 Controlled overproduction of protein by lactic acid bacteria. Trends in Biotechnology 15 135140Google Scholar
Kuipers, OP, de Ruyter, PG, Kleerebezem, M & de Vos, WM 1998 Quorum sensing-controlled gene expression in lactic acid bacteria. Journal of Biotechnology 64 1521Google Scholar
Kunji, ER, Slotboom, DJ & Poolman, B 2003 Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta 1610 97108CrossRefGoogle ScholarPubMed
Laemmli, UK 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685Google Scholar
Lee, SJ, Kim, DM, Bae, KH, Byun, SM & Chung, JH 2000 Enhancement of secretion and extracellular stability of staphlokinase in Bacillus subtilis by wprA gene disruption. Applied and Environmental Microbiology 66 476480CrossRefGoogle ScholarPubMed
Le Loir, Y, Azevedo, V, Oliveira, SC, Freitas, DA, Miyoshi, A, Bermudez-Humaran, LG, Nouaille, S, Ribeiro, LA, Leclercq, S, Gabriel, JE, Guimaraes, VD, Oliveira, MN, Charlier, C, Gautier, M & Langella, P 2005 Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microbial Cell Factories 4 2Google Scholar
Leroy, F & Devuyst, L 2004 Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15 6778Google Scholar
Li, XY, Tetling, SS, Winkler, UK, Jaeger, KE & Benedik, MJ 1995 Gene cloning, sequence analysis, purification, and secretion by Escherichia coli of an extracellular lipase from Serratia marcescens. Applied and Environmental Microbiology 61 26742680Google Scholar
Mierau, I & Kleerebezem, M 2005 10 years of the nisincontrolled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology 68 705717Google Scholar
Mierau, I, Leij, P, van Swam, I, Blommestein, B, Floris, E, Mond, J & Smid, EJ 2005a Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microbial Cell Factories 4 15CrossRefGoogle ScholarPubMed
Mierau, I, Olieman, K, Mond, J & Smid, EJ 2005b Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microbial Cell Factories 4 16Google Scholar
Miyoshi, A, Poquet, I, Azevedo, V, Commissaire, J, Bermudez-Humaran, L, Domakova, E, Leloir, Y, Oliveira, SC, Gruss, A & Langella, P 2002 Controlled production of stable heterologous proteins in Lactococcus lactis. Applied and Environmental Microbiology 68 31413146Google Scholar
Morello, E, Bermúdez-Humarán, LG, Llull, D, Solé, V, Miraglio, N, Langella, P & Poquet, I 2008 Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of Molecular Microbiology and Biotechnology 14 4858Google Scholar
Nouaille, S, Ribeiro, LA, Miyoshi, A, Pontes, D, Le Loir, Y, Oliveira, SC, Langella, P & Azevedo, V 2003 Heterologous protein production and delivery systems for Lactococcus lactis. Genetic and Molecular Research 2 102111Google Scholar
Peterbauer, C, Masischberger, T & Haltrich, D 2011 Food-grade expression in lactic acid bacteria. Biotechnology Journal 6 11471161Google Scholar
Pinto, JPC, Kuipers, OP, Marreddy, RKR, Poolman, B & Kok, J 2011 Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR. PLOS ONE Journal 6 114CrossRefGoogle ScholarPubMed
Raftari, M, Ghafourian, S, Sadeghifard, N, Sekawi, Z, Saari, N & Abu Bakar, F 2012 Overexpression of recombinant lipase from Burkholderia cepacia in Escherichia coli. European Journal of Inflammation 10 365369CrossRefGoogle Scholar
Raftari, M, Ghafourian, S & Abu Bakar, F 2013 Cloning and overexpression of extracellular elastase from Pseudomonas aeruginosa. European Journal of Inflammation 11 5560Google Scholar
Rahman, R, Kamarudin, N, Yunus, J, Salleh, A & Basri, M 2010 Expression of an organic solvent stable lipase from Staphylococcus epidermidis AT2. International Journal of Molecular Sciences 11 31953208Google Scholar
Saxena, RK, Ghosh, PK, Gupta, R, Davidson, WS, Bradoo, S & Gulati, R 1999 Microbial lipases: potential biocatalysts for the future industry. Current Science 77 101115Google Scholar
Schmid, RD & Verger, R 1998 Lipases: interfacial enzymes with attractive applications. Angewandte Chemie, International Edition 37 16091633Google Scholar
Schmidtke, G, Schmidt, M & Kloetzel, PM 1997 Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. Journal of Molecular Biology 268 95106Google Scholar
Sharma, R, Chisti, Y & Banerjee, UC 2001 Production, purification, characterization and applications of lipases. Biotechnology Advances 19 627662Google Scholar
Steele, HL and Streit, WR 2005 Metagenomics: advances in ecology and biotechnology. FEMS Microbiology Letters 247 105111Google Scholar
Wessels, S, Axelsson, L, Bech Hansen, E, De Vuyst, L, Laulund, S, Lähteenmäki, L & Lindgren, S 2004 The lactic acid bacteria, the food chain, and their regulation. Trends in Food Science and Technology 15 498505Google Scholar
Wu, SC, Ye, R, Wu, XC, Ng, SC & Wong, SL 1998 Enhanced secretory production of a single chain antibay fragment from Bacillus subtilis by coproduction of molecular chaperones. Journal of Bacteriology 180 28302835Google Scholar