Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:43:41.905Z Has data issue: false hasContentIssue false

Examination of the structure of the bovine milk-fat-globule membrane and of cheese by X-ray crystallography

Published online by Cambridge University Press:  01 June 2009

E. W. Evans
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
Susan L. Pillinger
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

Low-angle X-ray diffraction techniques have been applied to the study of the structure of the fat-globule membrane of milk and of Cheddar cheese. Membrane was prepared by freeze-thawing, churning and ether extraction, the endproduct of each method being a pellet produced by centrifuging. High-angle and low-angle reflexions from membrane could be related to triglyceride spacings, and low-angle reflexions due to spacings at about 5·5 nm to phospholipid bilayers. Spacings due to triglycerides were observed in mature Cheddar together with spacings that agreed well with values for some of the amino acids.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. & Cheeseman, G. C. (1971). Journal of Dairy Research 38, 409.CrossRefGoogle Scholar
Bargmann, W. & Knoop, A. (1959). Zeitschrift für Zellforschung und Mikroskopische Anatomie 49, 344.CrossRefGoogle Scholar
Chapman, D., Williams, R. M. & Ladbrooke, B. D. (1967). Chemistry and Physics of Lipids 1, 445.CrossRefGoogle Scholar
Deuel, H. J. (1951). Lipids. Vol. 1. Chemistry, p. 253. New York: Interscience.Google Scholar
Ferguson, R. H. & Lutton, E. S. (1947). Journal of the American Chemical Society 69, 1445.CrossRefGoogle Scholar
Finean, J. B. (1953). Biochimica et Biophysica Acta 10, 371.CrossRefGoogle Scholar
Finean, J. B. & Burge, R. E. (1963). Journal of Molecular Biology 7, 672.CrossRefGoogle Scholar
Finean, J. B., Coleman, R., Green, W. G. & Limbrick, A. R. (1966). Journal of Cell Science 1, 287.CrossRefGoogle Scholar
Franks, A. (1958). British Journal of Applied Physics 9, 349.CrossRefGoogle Scholar
Henson, A. F., Holdsworth, G. & Chandan, R. C. (1971). Journal of Dairy Science 54, 1752.CrossRefGoogle Scholar
Keenan, T. W., Morré, D. J., Olson, D. E., Yunghans, W. N. & Patton, S. (1970). Journal of Cell Biology 44, 80.CrossRefGoogle Scholar
Levine, Y. K. (1970). Thesis, University of London.Google Scholar
Tuckey, S. L., Ruehe, H. A. & Clark, G. L. (1938 a). Journal of Dairy Science 21, 767.CrossRefGoogle Scholar
Tuckey, S. L., Ruehe, H. A. & Clark, G. L. (1938 b). Journal of Dairy Science 21, 777.CrossRefGoogle Scholar
Wilkins, M. H. F., Blaurock, A. E. & Engelman, D. M. (1971). Nature New Biology 230, 72.CrossRefGoogle Scholar
Wooding, F. B. P. (1971). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Woodrow, I. L. & deMan, J. M. (1968). Journal of Dairy Science 51, 996.CrossRefGoogle Scholar