Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T05:35:28.147Z Has data issue: false hasContentIssue false

Effect of yogurt feeding on the small and large intestine associated lymphoid cells in mice

Published online by Cambridge University Press:  01 June 2009

Gabriela Perdigón*
Affiliation:
Sección Inmunología, Institute de Microbiología, Facultad de Bioquímica, Química y Farmatia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, Argentina Centra de Referencia para Lactobacilos (CERELA), Chacabuco 145, 4000 San Miguel de Tucumá, Argentina
Mirta Rachid
Affiliation:
Sección Inmunología, Institute de Microbiología, Facultad de Bioquímica, Química y Farmatia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, Argentina
Marta V. De Budeguer
Affiliation:
Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán, Argentina
Juan C. Valdez
Affiliation:
Sección Inmunología, Institute de Microbiología, Facultad de Bioquímica, Química y Farmatia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, Argentina
*
For correspondence.

Summary

The effect of giving yogurt supplements to Balb/c mice on the various gut-associated lymphoid cells was studied. Animals were fed for 2, 5, 7 and 10 consecutive days. The different lymphoid cell types were identified and counted by haematoxylin–eosin staining of histological slices. The numbers of cells secreting IgA, IgG and IgM and the numbers of T lymphocytes were determined by direct immunofluorescence. The degree of activation of the intestinal macrophages in the small intestine was assessed by measuring the β-glucuronidase (EC 3.2.1.31) released into the intestinal fluid, and also by a histochemical method. Throughout the feeding period, there were no histological alterations in the gut, but there was marked cell infiltration, mainly of plasma cells and lymphocytes. The number of macrophages on the small intestine increased significantly after feeding for 2 d, while the β-glucuronidase activity was only slightly higher that of the controls. After a 7 d feeding period, the number of IgA secreting cells increased, while the values for cells secreting IgM and IgG and for T lymphocytes remained similar to those of the controls. The effect of giving yogurt on lymphoid cells associated with the large intestine was mainly on the numbers of IgA secreting B cells and T lymphocytes, with a marked increase during the whole feeding period in the latter type of cell. Since giving yogurt mainly enhanced the IgA secreting B cells in both small and large intestines, this increase would strengthen the host's defence mechanisms in the intestinal mucosa. Although the number of macrophages was increased, there was no enhancement in their activity, which might have harmed the host by producing an inflammatory response.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arends, J. W., Wiggers, T., Thijs, C. T., Verstijnen, C., Swaen, G. J. V. & Bosman, F. T. 1984 The value of secretory component (SC) immunoreactivity in diagnosis and prognosis of colorectal carcinomas. American Journal of Clinical Pathology 82 267274CrossRefGoogle ScholarPubMed
Berg, R. D. 1992 Translocation and the indigenous gut flora. In Probiotics: the Scientific Basis, pp. 5585 (Ed. Fuller, R.). London: Chapman and HallCrossRefGoogle Scholar
Black, R. E., Levine, M. M., Clements, M. L., Losonsky, G., Herrington, D., Berman, S. & Formal, S. B. 1987 Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. Journal of Infectious Diseases 155 12601265Google Scholar
Bogdanov, I., Dalev, P. G., Gurevich, A. I., Kolosov, M. N., Mal'Kova, V. P., Plemyannikova, L. A. & Sorokina, I. B. 1975 Antitumour glycopeptides from Lactobacillus bulgaricus cell wall. FEES Letters 57 259261CrossRefGoogle ScholarPubMed
Briend, A. 1987 Prévention et Traitment de la Malnutrition. Guide Practique. Paris: OrstomGoogle Scholar
Chouaib, S., Chatenoud, L., Klatzmann, D. & Fradelizi, D. 1984 The mechanisms of inhibition of TL-2 production. II. PGE2, induction of suppressor T lymphocytes. Journal of Immunology 132 18511857CrossRefGoogle Scholar
Conge, G. A., Gouache, P., Desormeau-Bedot, J. P., Loisillier, F. & Lemonnier, D. 1980 [Comparative effects of a diet enriched with live or heated yogurt on the immune system of the mouse.] Reproduction, Nutrition, Développement 20 929938Google Scholar
De Simone, C., Bianchi Salvadori, B., Jirillo, E., Baldinelli, L., Di Fabio, S. & Vesely, R. 1989 Yogurt and the immune response. In Les Laits Fermentés, pp. 6367. London: John LibbeyGoogle Scholar
De Simone, C., Bianchi Salvadori, B., Negri, R., Ferrazzi, M., Baldinelli, L. & Vesely, R. 1986 The adjuvant effect of yogurt on production of gamma interferon by con A stimulated human peripheral blood lymphocytes. Nutrition Reports International 33 419433Google Scholar
Dupuis, Y., Gambier, J. & Fournier, P. 1985 [Bioavailability of calcium in milk, yogurt and processed cheese.] Sciences des Aliments 5 559585Google Scholar
Gorbach, S. L. 1990 Lactic acid bacteria and human health. Annals of Medicine 22 3341CrossRefGoogle ScholarPubMed
Hitchins, A. D., McDonough, F. E., Wells, P. & Wong, N. P. 1986 Relationship of dietary carbohydrate and lactic acid to the resistance of yogurt-fed male weanling rats to gastrointestinal salmonellosis. Nutrition Reports International 33 641649Google Scholar
Hitchins, A. D., Wells, P., McDonough, F. E. & Wong, N. P. 1985 Amelioration of the adverse effect of a gastrointestinal challenge with Salmonella enteritidis on weanling rats by a yogurt diet. American Journal of Clinical Nutrition 41 92100CrossRefGoogle ScholarPubMed
Hosono, A., Kashina, T. & Kada, T. 1986 Antimutagenic properties of lactic acid-cultured milk on chemical and fecal mutagens. Journal of Dairy Science 69 22372242CrossRefGoogle ScholarPubMed
Isaacson, P. 1982 Immunoperoxidase study of the secretory immunoglobulin system in colonic neoplasia. Journal of Clinical Pathology 35 1425CrossRefGoogle ScholarPubMed
Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. 1984 Yogurt: an autodigesting source of lactose. New England Journal of Medicine 310 13CrossRefGoogle ScholarPubMed
McDonough, F. E., Wong, N. P., Wells, P., Hitchins, A. D. & Bodwell, C. E. 1985 Stimulation of rat growth by yogurt – effect of vitamins and minerals. Nutrition Reports International 31 12371245Google Scholar
Megalla, S. E. & Hafez, A. H. 1982 Detoxification of aflatoxin B1 by acidogenous yoghurt. Mycopathologia 77 8991CrossRefGoogle ScholarPubMed
Morgan, D., Dupont, H., Wood, L. V. & Kohl, S. 1984 Cytotoxicity of leukocytes from normal and Shigella susceptible (opium-treated) guinea pigs against virulent Shigella sonnei. Infection and Immunity 46 2224CrossRefGoogle ScholarPubMed
Perdigón, G. & Alvarez, S. 1992 Probiotics and the immune state. In Probiotics: the Scientific Basis pp. 145180 (Ed. Fuller, R.). London: Chapman and HallCrossRefGoogle Scholar
Perdigón, G., Alvarez, S., Nader De Macias, M. E., Roux, M. E. & Pesce De Ruiz Holgado, A. 1990 The oral administration of lactic acid bacteria increase the mucosal intestinal immunity in response to enteropathogens. Journal of Food Protection 53 404410CrossRefGoogle ScholarPubMed
Perdigón, G., Alvarez, S., Nader De Macias, M. E., Savoy De Giori, G., Medici, M. & Nuñez De Kairuz, M. 1991 a Behaviour of natural and heated yogurt in the immune system and preventive capacity on enteric infections. Milchwissenschaft 46 411415Google Scholar
Perdigón, G., Alvarez, S. & Pesce De Ruiz Holgado, A. 1991 b Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. Journal of Dairy Research 58 485496CrossRefGoogle ScholarPubMed
Perdigón, G., Nader De Macias, M. E., Alvarez, S., Oliver, G. & Pesce De Ruiz Holgado, A. 1988 Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63 1723Google Scholar
Rowland, I. R., Mallett, A. K. & Wise, A. 1985 The effect of diet on the mammalian gut flora and its metabolic activities. CRC Critical Reviews in Toxicology 16 31103CrossRefGoogle ScholarPubMed
Rubin, H. E., Nerad, T. & Vaughan, F. 1982 Lactate acid inhibition of Salmonella typhimurium in yogurt. Journal of Dairy Science 65 197203Google Scholar
Schorlemmer, H. U., Davies, P., Hylton, W., Gugig, M. & Allison, A. C. 1977 The selective release of lysosomal acid hydrolases from mouse peritoneal macrophages by stimuli of chronic inflammation. British Journal of Experimental Pathology 58 315325Google Scholar
Smith, T. M., Kolars, J. C., Savaiano, D. A. & Lewitt, M. D. 1985 Absorption of calcium from milk and yogurt. American Journal of Clinical Nutrition 42 11971200Google Scholar
Stossel, T. P. 1980 Phagocytosis. In Manual of Clinical Immunology, 2nd edn (Eds Rose, N. and Friedman, H.). Washington, DC: American Society for MicrobiologyGoogle Scholar
Surawicz, C. M., Elmer, G. W., Speelman, P., McFarland, L. V., Chinn, J. & Van Balle, G. 1989 Prevention of antibiotic associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology 96 981988Google Scholar
Takano, T., Arai, K., Murota, I., Hayakawa, H., Mizutani, T. & Mitsouka, T. 1985 Effect of feeding sour milk on longevity and tumorigenesis in mice and rats. Bifidobacteria and Microflora 4 3137Google Scholar
Walker, W. A., Lake, A. M. & Block, K. J. 1982 Immunologic mechanisms for goblet cell mucous release: possible role in mucosal host defence. In Recent Advances in Mucosal Immunity, pp. 331342 (Eds Strober, W., Hanson, L. Å. and Sell, K. W.). New York: Raven Press.Google Scholar
Zichowicz, C., Kowalczyk, S.Ciephinsha, T. 1975 Results of administration of Lactobacillus acidophilus (acidophilus milk) in an endemic focus of dysentery. Pediatria Polska 50 429435Google Scholar