Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T15:04:18.286Z Has data issue: false hasContentIssue false

The effect of lipolytic Gram-negative psychrotrophs in stored milk on the development of rancidity in Cheddar cheese

Published online by Cambridge University Press:  01 June 2009

B. A. Law
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
M. Elisabeth Sharpe
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
Helen R. Chapman
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The highest incidence of lipolytic activity among the psychrotrophic Gram-negative flora of commercial raw milks was found in strains of Pseudomonas fluorescens and Ps. fragi. The lipases of all of the lipolytic strains remained wholly or partly active after heat treatment at 63°C for 30 min. Two of the strains tested further had lipases which retained 20–25% of their activity even when heated at 100 °C for 10 min. Cheeses made from milks in which strains or a single strain of lipolytic Gram-negative rods (GNR) had been allowed to multiply to > 107 colony forming units/ml became rancid after 4 months even though the GNR had been killed by pasteurization. The rancidity was characterized by a soapy off-flavour in cheeses containing free fatty acid concentrations from 3 to 10 times higher than those in control cheeses made from stored milks with low counts of GNR. Strong rancidity could be reproduced by adding the culture supernatant of a pre-grown lipolytic strain, but not the washed cells, to milk and pasteurizing it immediately before cheese-making, demonstrating the extracellular nature of the rancidity-inducing lipases.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alford, J. A. & Pierce, D. N. (1963). Journal of Bacteriology 86, 24.Google Scholar
Björck, L., Rosén, C-G., Marshall, V. & Reiter, B. (1975). Applied Microbiology 30, 199.CrossRefGoogle Scholar
Chapman, H. R., Mabbitt, L. A. & Sharpe, M. E. (1966). 17th International Dairy Congress, Munich D 61.Google Scholar
Driessen, F. M. & Stadhouders, J. (1971). Netherlands Milk and Dairy Journal 25, 141.Google Scholar
Fryer, T. F., Reiter, B. & Lawrence, R. C. (1967). Journal of Dairy Science 50, 388.CrossRefGoogle Scholar
Fryer, T. F., Sharpe, M. E. & Reiter, B. (1966). 17th International Dairy Congress, Munich D, 61.Google Scholar
Harper, W. J., Schwartz, D. P. & El-Hagarawy, I. S. (1956). Journal of Dairy Science 39, 46.CrossRefGoogle Scholar
Hendrie, M. S. & Shewan, J. M. (1966). In Identification Methods for Microbiologists, SAB Technical Series, 1, 1. (Eds Gibbs, B. M. and Skinner, F. A..) London, New York: Academic Press.Google Scholar
Kishonti, E. & Sjöström, G. S. (1970). 18th International Dairy Congress, Sydney, 1E, B3.Google Scholar
Law, B. A., Sharpe, M. E., Mabbittt, L. A. & Cole, C. B. (1973). In Sampling – Microbiological Monitoring of Environments. SAB Technical Series, 7, 1. (Eds Board, R. G. and Lovelock, D. W..) London, New York: Academic Press Inc.Google Scholar
Lawrence, R. C., Fryer, T. F. & Reiter, B. (1967). Nature 213, 1264.CrossRefGoogle Scholar
Mabbitt, L. A., Chapman, H. R. & Sharpe, M. E. (1959). Journal of Dairy Research 26, 105.CrossRefGoogle Scholar
Naylor, J. & Sharpe, M. E. (1958). Journal of Dairy Research 25, 92.CrossRefGoogle Scholar
Ohren, J. A. & Tuckey, S. L. (1969). Journal of Dairy Science 52, 598.CrossRefGoogle Scholar
Patel, G. B. & Blankenagel, G. (1972). Journal of Milk and Food Technology 35, 203.CrossRefGoogle Scholar
Pinheiro, A. J., Liska, B. J. & Parmelee, C. E. (1965). Journal of Dairy Science 48, 983.CrossRefGoogle Scholar
Reiter, B., Fryer, T. F., Pickering, A., Chapman, H. R., Lawrence, R. C. & Sharpe, M. E. (1967). Journal of Dairy Research 34, 257.CrossRefGoogle Scholar
Reiter, B., Fryer, T. F. & Sharpe, M. E. (1965). Journal of Dairy Research 32, 89.CrossRefGoogle Scholar
Rogosa, M., Mitchell, J. A. & Wiseman, R. T. (1951). Journal of Bacteriology 62, 132.Google Scholar
Sharpe, M. E. (1972). Proceedings of the 3rd Nordic Aroma Symposium, Hämeenlinna 6479.Google Scholar
Shewan, J. M., Hobbs, G. & Hodgkiss, W. (1960). Journal of Applied Bacteriology 23, 379.CrossRefGoogle Scholar
Stadhouders, J. & Mulder, H. (1958). Netherlands Milk and Dairy Journal 12, 237.Google Scholar
Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. (1966). Journal of General Microbiology 43, 159.CrossRefGoogle Scholar
Thomas, S. B. (1974). Dairy Industries 39, 279.Google Scholar
Thomas, S. B. & Thomas, B. F. (1973 a). Dairy Industries 38, 11.Google Scholar
Thomas, S. B. & Thomas, B. F. (1973 b). Dairy Industries 38, 61.Google Scholar
Thornley, M. J. (1967). Journal of General Microbiology 49, 211.CrossRefGoogle Scholar