Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T15:43:22.006Z Has data issue: false hasContentIssue false

Characterization and kinetics of gastric emptying of peptides derived from milk proteins in the preruminant calf

Published online by Cambridge University Press:  01 June 2009

P. Scanff
Affiliation:
Station de Recherches Laitières, INRA, 78352 Jouy-en-Josas Cedex, France
M. Yvon
Affiliation:
Station de Recherches Laitières, INRA, 78352 Jouy-en-Josas Cedex, France
S. Thirouin
Affiliation:
Station de Recherches Laitières, INRA, 78352 Jouy-en-Josas Cedex, France
J.-P. Pelissffir
Affiliation:
Station de Recherches Laitières, INRA, 78352 Jouy-en-Josas Cedex, France

Summary

The gastric emptying kinetics of peptides derived from milk protein were studied in vivo in preruminant calves by collecting and characterizing the whole effluent leaving the stomach for 12 h after ingestion of crude skim milk. Peptides were isolated by reversed-phase HPLC and identified. Particular attention was paid to biologically active peptides and to peptides that could be precursors of biologically active sequences. A gastrin inhibitor, the caseinomacropeptide, was emptied from the stomach only during the first 0·5 h of digestion and rapidly hydrolysed. Precursors of immunostimulatory peptides from αs1 - and β-caseins were emptied throughout digestion in the gastric effluent. A precursor of β-casomorphins (peptide 58–93 of β-casein) was emptied from the stomach 3·5 h after the meal when it was taken on an empty stomach. From this precursor, peptides that may be resistant to hydrolysis by intestinal peptidase were obtained after in vitro hydrolysis by pancreatic enzymes. A phosphopeptide (fragment 110–142 of αs1-casein) was also found in digesta after a few hours of digestion. When the meal was not taken on an empty stomach, these peptides were emptied in the first digesta at a low concentration. The potential activity of these peptides is discussed. The results support the hypothesis that active sequences could still be present in the gut after the action of pancreatic enzymes.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleiˇnik, S. T., Stan, E. Ya. & Chernikov, M. P. 1984 [A glycopeptide obtained from κ-casein and its effect on Protein assimilation.] Voprosy Pitaniya no. II 4750Google Scholar
Ash, R. W. 1964 Abomasal secretion and emptying in suckled calves. Journal of Physiology 172 425438CrossRefGoogle ScholarPubMed
Beucher, S. 1989 [Determination of the specificity of clastase for αs1- and β-caseins.] Mémoire de DEA Sciences Alimentaires. Université Paris 7, FranceGoogle Scholar
Brantl, V., Teschemacher, H., Henschen, A. & Lottspeich, F. 1979 Novel opioid peptidcs derived from casein (β-casomorphins). 1. Isolation from bovine casein peptone. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 360 12111216CrossRefGoogle Scholar
Brust, P., Köhler, R., Brandsch, M., Born, I., Hartrodt, B., Neubert, K. & Gebhardt, G. 1991 Effects of dietary β-casomorphins on the intestinal transport of amino acids and on plasma insulin concentrations in rats. Zoologisches Jahrblatt für Physiologie 95 97107Google Scholar
Caporale, C., Fontanella, A., Petrilli, P., Pucci, P., Molinaro, M. F., Picone, D. & Auricchio, S. 1985 Isolation and characterization of dipeptidyl peptidase IV from human meconium. FEBS Letters 184 273277CrossRefGoogle ScholarPubMed
Chernikov, M. P., Nikol'Skaya, G. V., Stan, E. Ya., Shlygin, G. K. & Vasilevskaya, L. S. 1974 [Biological role of casein glycomacropeptide.] Voprosy Pitaniya no. II 2125Google Scholar
Daniel, H., Vohwinkel, M. & Rehner, G. 1990 Effect of casein and β-casomorphins on gastrointestinal motility in rats. Journal of Nutrition 120 252257CrossRefGoogle ScholarPubMed
Fiat, A.-M., Levy-Toledano, S., Caen, J. P. & Jollés, P. 1989 Biologically active peptides of casein and lactotransferrin implicated in platelet function. Journal of Dairy Research 56 351355Google Scholar
Gerber, H. W. & Jost, R. 1986 Casein phosphopeptides: their effect on calcification of in vitro cultured embryonic rat bone. Calcified Tissue International 38 350357CrossRefGoogle ScholarPubMed
Guilloteau, P., Chayvialle, J. A., Mendy, F., Roger, L., Toullec, R., Bernard, C., Mouats, A. & Favbrdin, P. 1986 [Effects of caseinomacropeptide on gastric secretion and circulating levels of digestive hormones in the preruminant calf.] 2-ème Journées Nutrition des HerbivoresGoogle Scholar
Guillou, H., Miranda, G. & Pélissier, J.-P. 1991 Hydrolysis of β-casein by gastric proteasos. 1. Comparison of proteolytic action of bovine chymosin and pepsin A. International Journal of Peptide and Protein Research 37 494501CrossRefGoogle ScholarPubMed
Henschen, A., Lottspeich, F., Brantl, V. & Teschemacher, H. 1979 Novel opioid peptidcs derived from casein (β-casomorphins). II. Structure of active components from bovine casein peptone. Hoppe Seyler's Zeitschrift für Physiologische Chemie 360 12171224Google ScholarPubMed
Jollés, P., Levy-Toledano, S., Fiat, A.-M., Soria, C., Gillessen, D., Thomaidis, A., Dunn, F. W. & Caen, J. P. 1986 Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from k-casein on platelet function. European Journal of Biochemistry 158 379382CrossRefGoogle ScholarPubMed
Kaminogawa, S. 1981 [Mechanism of casein degradation by proteases.] Japnnese Journal of Zootechnical Science 52, 627638Google Scholar
Lee, Y. S., Noguchi, T. & Naito, H. 1979 An enhanced intestinal absorption of calcium in the rat directly attributed to dietary casein. Agricultural and Biological Chemistry 43 20092011Google Scholar
Léonil, J. & Mollé, D. 1990 Liberation of tryptic fragments from caseinomacropeptide of bovine k-casein involved in platelet function. Kinetic study. Biochemical Journal 271 247252CrossRefGoogle ScholarPubMed
Lopker, A., Abood, L. G., Hoss, W. & Lionetti, F. J. 1980 Stereoselective muscarinic, acetylcholine and opiate receptors in human phagocytic leukocytes. Biochemical Pharmacology 29 13611365Google Scholar
Maruyama, S., Mitachi, H., Tanaka, H., Tomizuka, N. & Suzuki, H. 1987 Studies on the active site and antihypertensive activity of angiotensin-1 converting enzyme inhibitors derived from casein. Agricultural and Biological Chemistry 51 15811586Google Scholar
Maruyama, S., Nakagomi, K., Tomizuka, N. & Suzuki, H. 1985 Angiotensin I converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the uterus and the ileum of rats. Agricultural and Biological Chemistry 49 14051409Google Scholar
Meisel, H. & Frister, H. 1988 Chemical characterization of a caseinophosphopeptide isolated from in vivo digests of a casein diet. Biological Chemistry Hoppe-Seyler 369 12751279CrossRefGoogle ScholarPubMed
Meisel, H. & Frister, H. 1989 Chemical characterization of bioactive peptides from in vivo digests of casein Journal of Dairy Research 56, 343349CrossRefGoogle ScholarPubMed
Migliore-Samour, D., Floc'H, F. & Jollés, P. 1989 Biologically active casein peptidcs implicated in immunomodulation. Journal of Dairy Research 56 357362CrossRefGoogle ScholarPubMed
Migliore-Samour, D. & Jollés, P. 1988 Casein, a prohormone with an immunomodulating role for the newborn? Experientia 44 188193CrossRefGoogle ScholarPubMed
Mykkänen, H. M. & Wasserman, R. H. 1980 Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. Journal of Nutrition 110 21412148CrossRefGoogle ScholarPubMed
Naito, H. & Suzuki, H. 1974 Further evidence for the formation in vivo of phosphopeptides in the intestinal lumen from dietary β-casein. Agricultural and Biological Chemistry 38 15431545CrossRefGoogle Scholar
Pélissier, J. P. 1984 [Proteolysis of caseins.] Sciences des Aliments 4, 135Google Scholar
Petrilli, P., Picone, D., Caporale, G., Addeo, F., Auricchio, S. & Marino, G. 1984 Does casomorphin have a functional role? FEBS Letters 169 5356Google Scholar
Ribadeau-Dumas, B., Brignon, G., Grosclaude, F. & Mercier, J.-C. 1971 [Primary structure of bovine β-casein. Sequence of the C-terminal 65 amino acid residues.] European Journal of Biochemistry 20, 258263CrossRefGoogle Scholar
Sato, R., Noguchi, T. & Naito, H. 1986 Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. Journal of Nutritional Science and Vitaminology 32 6776CrossRefGoogle ScholarPubMed
Scanff, P., Savalle, B., Miranda, G., Pélissier, J.-P., Guilloteau, P. & Toullec, R. 1990 In vivo gastric digestion of milk proteins. Effect of technological treatments. Journal of Agricultural and Food Chemistry 38 16231629Google Scholar
Scanff, P., Yvon, M., Pélissier, J.-P., Guilloteau, P. & Toullec, R. 1991 Effect of some technological treatments of milk on amino acid composition of in vivo effluents during gastric digestion. Journal of Agricultural and Food Chemistry 39 14821487Google Scholar
Stan, E. Ya., Aleiˇnik, S. I. & Chernikov, M. P. 1983 [The physiologically active kappa-casein peptides.] Fiziologicheskiˇi Zhurnal SSSR im. I. M. Sechenova 69 855858Google Scholar
Svedberg, J., De Haas, J., Leimenstoll, K. G., Paul, F. & Teschemacher, H. 1985 Demonstration of β-casomorphin immunoreactive material in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6 825830Google Scholar
Tarr, G. E. 1982 In Methods in Protein Sequences Analysis, p. 223 (Ed. Elzinga, M.). Clifton, NJ: Humana PressCrossRefGoogle Scholar
Umbach, M., Teschemacher, H., Praetorius, K., Kirshhäusser, R. & Bostedt, H. 1985 Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12 223230CrossRefGoogle ScholarPubMed
Vasilkvskaya, L. S., Stan, E. Ya., Chernikov, M. P. & Shlygin, G. K. 1977 [Inhibiting effect of glycomacropeptide on gastric secretion caused by varions humoral stimulants.] Voprosy Pitaniya no. 4 2124Google Scholar
Visser, S. 1981 Proteolytic enzymes and their action on milk proteins. A review. Netherlands Mille and Dairy Journal 35 6588Google Scholar
Wybran, J., Appelboom, T., Famacy, J. P. & Govaerts, A. 1979 Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human T lymphocytes. Journal of Immunology 123 10681070CrossRefGoogle Scholar
Yvon, M. & Pélissier, J. P. 1987 Characterization and kinetics of evacuation of peptides resulting from casein hydrolysis in the stomach of the calf. Journal of Agricultural and Food Chemistry 35 148156CrossRefGoogle Scholar