Skip to main content Accessibility help
×
Home

Autoregressive repeatability model for genetic evaluation of longitudinal reproductive traits in dairy cattle

  • Hugo T. Silva (a1), Paulo S. Lopes (a1), Claudio N. Costa (a2), Fabyano F. Silva (a1), Delvan A. Silva (a1), Alessandra A. Silva (a1), Gertrude Thompson (a3) (a4) and Júlio Carvalheira (a3) (a4)...

Abstract

We investigated the efficiency of the autoregressive repeatability model (AR) for genetic evaluation of longitudinal reproductive traits in Portuguese Holstein cattle and compared the results with those from the conventional repeatability model (REP). The data set comprised records taken during the first four calving orders, corresponding to a total of 416, 766, 872 and 766 thousand records for interval between calving to first service, days open, calving interval and daughter pregnancy rate, respectively. Both models included fixed (month and age classes associated to each calving order) and random (herd-year-season, animal and permanent environmental) effects. For AR model, a first-order autoregressive (co)variance structure was fitted for the herd-year-season and permanent environmental effects. The AR outperformed the REP model, with lower Akaike Information Criteria, lower Mean Square Error and Akaike Weights close to unity. Rank correlations between estimated breeding values (EBV) with AR and REP models ranged from 0.95 to 0.97 for all studied reproductive traits, when the total bulls were considered. When considering only the top-100 selected bulls, the rank correlation ranged from 0.72 to 0.88. These results indicate that the re-ranking observed at the top level will provide more opportunities for selecting the best bulls. The EBV reliabilities provided by AR model was larger for all traits, but the magnitudes of the annual genetic progress were similar between two models. Overall, the proposed AR model was suitable for genetic evaluations of longitudinal reproductive traits in dairy cattle, outperforming the REP model.

Copyright

Corresponding author

Author for correspondence: Júlio Carvalheira, Email: jgc3@cibio.up.pt

References

Hide All
Averill, T, Rekaya, R and Weigel, K (2006) Random regression models for male and female fertility evaluation using longitudinal binary data. Journal of Dairy Science 89, 36813689.
Berry, DP, Wall, E and Pryce, JE (2014) Genetics and genomics of reproductive performance in dairy and beef cattle. Animal: An International Journal of Animal Bioscience 8, 105121.
Burnham, KP and Anderson, DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261304.
Carvalheira, JGV, Blake, RW, Pollak, EJ, Quaas, RL and Duran-Castro, CV (1998) Application of an autoregressive process to estimate genetic parameters and breeding values for daily milk yield in a tropical herd of Lucerna cattle and in United States Holstein herds. Journal of Dairy Science 81, 27382751.
Carvalheira, J, Pollak, EJ, Quaas, RL and Blake, RW (2002) An autoregressive repeatability animal model for test-day records in multiple lactations. Journal of Dairy Science 85, 20402045.
Chegini, A, Hossein-Zadeh, NG, Moghaddam, SHH and Shadparvar, AA (2019) Appropriate selection indices for functional traits in dairy cattle breeding schemes. Journal of Dairy Research 86, 1318.
Chiumia, D, Chagunda, MG, Macrae, AI and Roberts, DJ (2013) Predisposing factors for involuntary culling in Holstein–Friesian dairy cows. Journal of Dairy Research 80, 4550.
Costa, CN, Carvalheira, J, Cobuci, JA, Freitas, AF and Thompson, G (2009) Estimation of genetic parameters of test day fat and protein yields in Brazilian Holstein cattle using an autoregressive multiple lactation animal model. South African Journal of Animal Science 39, 165168.
Frioni, N, Rovere, G, Aguilar, I and Urioste, JI (2017) Genetic parameters and correlations between days open and production traits across lactations in pasture based dairy production systems. Livestock Science 204, 104109.
Gernand, E and König, S (2017) Genetic relationships among female fertility disorders, female fertility traits and productivity of Holstein dairy cows in the early lactation period. Journal of Animal Breeding and Genetics 134, 353363.
Ghiasi, H, Pakdel, A, Nejati-Javaremi, A, Mehrabani-Yeganeh, H, Honarvar, M, González-Recio, O, Carabaño, MJ and Alenda, R (2011) Genetic variance components for female fertility in Iranian Holstein cows. Livestock Science 139, 277280.
González-Recio, O, Pérez-Cabal, MA and Alenda, R (2004) Economic value of female fertility and its relationship with profit in Spanish dairy cattle. Journal of Dairy Science 87, 30533061.
Haile-Mariam, M, Bowman, PJ and Pryce, JE (2013) Genetic analyses of fertility and predictor traits in Holstein herds with low and high mean calving intervals and in Jersey herds. Journal of Dairy Science 96, 655667.
Jorjani, H (2007) International genetic evaluation of female fertility traits in five major breeds. Interbull Bulletin 37, 144.
Kadarmideen, HN, Thompson, R, Coffey, MP and Kossaibati, MA (2003) Genetic parameters and evaluations from single-and multiple-trait analysis of dairy cow fertility and milk production. Livestock Production 81, 183195.
Nelder, JA and Mead, R (1965) A simplex method for function minimization. The Computer Journal 7, 308313.
Quaas, RL, Anderson, RD and Gilmour, AR (1984) BLUP School handbook. In K. Hammond (ed.), Use of Mixed Models for Prediction and for Estimation of (co) Variance Components. New South Wales, Australia: Animal Genetics and Breeding Unit, University of New England, pp. 176.
Sawalha, RM, Keown, JF, Kachman, SD and Van Vleck, LD (2005) Genetic evaluation of dairy cattle with test-day models with autoregressive covariance structures and with a 305-d model. Journal of Dairy Science 88, 33463353.
Sewalem, A, Kistemaker, GJ and Miglior, F (2010) Relationship between female fertility and production traits in Canadian Holsteins. Journal of Dairy Science 93, 44274434.
Silva, AA, Silva, DA, Silva, FF, Costa, CN, Lopes, PS, Caetano, AR, Thompson, G and Carvalheira, J (2019a) Autoregressive single-step test-day model for genomic evaluations of Portuguese Holstein cattle. Journal of Dairy Science 102, 63306339.
Silva, DA, Costa, CN, Silva, AA, Silva, FF, Lopes, PS, Santos, GG, Thompson, G and Carvalheira, J (2019b) Unknown parent and contemporary groups for genetic evaluation of Brazilian Holstein using autoregressive test-day models. Livestock Science 220, 17.
Smith, SP and Graser, HU (1986) Estimating variance components in a class of mixed models by restricted maximum likelihood. Journal of Dairy Science 69, 11561165.
Stevenson, JS and Britt, JH (2017) A 100-year review: practical female reproductive management. Journal of Dairy Science 100, 1029210313.
Sun, C, Madsen, P, Lund, MS, Zhang, Y, Nielsen, US and Su, G (2010) Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits. Journal of Animal Science 88, 871878.
Tiezzi, F, Maltecca, C, Cecchinato, A, Penasa, M and Bittante, G (2012) Genetic parameters for fertility of dairy heifers and cows at different parities and relationships with production traits in first lactation. Journal of Dairy Science 95, 73557362.
VanRaden, PM, Sanders, AH, Tooker, ME, Miller, RH, Norman, HD, Kuhn, MT and Wiggans, GR (2004) Development of a national genetic evaluation for cow fertility. Journal of Dairy Science 87, 22852292.

Keywords

Type Description Title
PDF
Supplementary materials

Silva et al. supplementary material
Tables S1 and S2

 PDF (199 KB)
199 KB

Autoregressive repeatability model for genetic evaluation of longitudinal reproductive traits in dairy cattle

  • Hugo T. Silva (a1), Paulo S. Lopes (a1), Claudio N. Costa (a2), Fabyano F. Silva (a1), Delvan A. Silva (a1), Alessandra A. Silva (a1), Gertrude Thompson (a3) (a4) and Júlio Carvalheira (a3) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed