Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-5rkl9 Total loading time: 0.299 Render date: 2022-12-07T01:41:20.759Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Molecular characterisation of the buffalo SCAP gene and its association with milk production traits in water buffaloes

Published online by Cambridge University Press:  22 May 2018

Tingxian Deng
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Xiaoya Ma
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Chunying Pang
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Shasha Liang
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Xingrong Lu
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Anqin Duan
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
Xianwei Liang*
Affiliation:
Guangxi provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
*
*For correspondence; e-mail: liangbri@126.com

Abstract

The study reported in this Research Communication was conducted to investigate the molecular characterisation of buffalo SCAP gene, expression analysis, and the association between single nucleotide polymorphisms and milk production traits in 384 buffaloes. Sequence analysis revealed the SCAP gene had an open reading frame of 3837 bp encoding 1279 amino acids. A ubiquitous expression profile of SCAP gene was detected in various tissues with extreme predominance in the mammary gland during early lactation. Moreover, eleven SNPs in buffalo SCAP gene were identified, six of them (g.1717600A>G, g.1757922C>T, g.1758953G>A, g.1759142C>T, g.1760740G>A, and g.1766036T>C) were found to be significantly associated with 305-day milk yield. Thus, buffalo SCAP could sever as a candidate gene affecting milk production traits in buffalo and the identified SNPs might potentially be genetic markers.

Type
Research Article
Copyright
Copyright © Hannah Dairy Research Foundation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspilcueta-Borquis, RR, Sesana, RC, Berrocal, MH, de Oliveira Seno, L, Bignardi, AB, Faro, LE, de Albuquerque, LG, de Camargo, GM & Tonhati, H 2010 Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla, Bovidae). Genetics and Molecular Biology 33 7177CrossRefGoogle Scholar
Bionaz, M & Loor, JJ 2008 Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9 366CrossRefGoogle ScholarPubMed
Cao, H, Miskie, BA & Hegele, RA 2002 Functional promoter polymorphism in SREBP cleavage-activating protein (SCAP). Journal of Human Genetics 47 492496CrossRefGoogle Scholar
Deng, T, Pang, C, Ma, X, Lu, X, Duan, A, Zhu, P & Liang, X 2016 Four novel polymorphisms of buffalo INSIG2 gene are associated with milk production traits in Chinese buffaloes. Molecular and Cellular Probes 30 294299CrossRefGoogle ScholarPubMed
Dixit, SP, Sivalingam, J, Tyagi, AK, Saroha, V, Sharma, A & Nagda, RK 2015 Association of novel SNPs in the candidate genes affecting caprine milk fatty acids related to human health. Meta Gene 4 4556CrossRefGoogle ScholarPubMed
Iwaki, K, Nakajima, T, Ota, N & Emi, M 1999 A common Ile796Val polymorphism of the human SREBP cleavage-activating protein (SCAP) gene. Journal of Human Genetics 44 421422CrossRefGoogle ScholarPubMed
Liu, FH, Song, JY, Shang, XR, Meng, XR, Ma, J & Wang, HJ 2014 The gene-gene interaction of INSIG-SCAP-SREBP pathway on the risk of obesity in Chinese children. BioMed Resarch International 2014 538564Google ScholarPubMed
Luskey, KL & Stevens, B 1985 Human 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation. Journal of Biological Chemistry 260 1027110277Google ScholarPubMed
Qiu, H, Xia, T, Chen, X, Zhao, X, Gan, L, Feng, S, Lei, T & Yang, Z 2006 Cloning, comparative characterization of porcine SCAP gene, and identification of its two splice variants. Molecular Genetics and Genomics 276 187196CrossRefGoogle ScholarPubMed
Rincon, G, Islas-Trejo, A, Castillo, AR, Bauman, DE, German, BJ & Medrano, JF 2012 Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. Journal of Dairy Research 79 6675CrossRefGoogle ScholarPubMed
Seegmiller, AC, Dobrosotskaya, I, Goldstein, JL, Ho, YK, Brown, MS & Rawson, RB 2002 The SREBP pathway in drosophila: regulation by palmitate, not sterols. Developmental Cell 2 229238CrossRefGoogle Scholar
Stirnimann, CU, Petsalaki, E, Russell, RB & Muller, CW 2010 WD40 proteins propel cellular networks. Trends in Biochemical Science 35 565574CrossRefGoogle ScholarPubMed
Swalve, HH 1995 The effect of test day models on the estimation of genetic parameters and breeding values for dairy yield traits. Journal of Dairy Science 78 929938CrossRefGoogle ScholarPubMed
Weber, LW, Boll, M & Stampfl, A 2004 Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World Journal of Gastroenterol 10 30813087CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Deng et al. supplementary material

Tables S1-S3 and Figures S1-S3

Download Deng et al. supplementary material(PDF)
PDF 1 MB
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular characterisation of the buffalo SCAP gene and its association with milk production traits in water buffaloes
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Molecular characterisation of the buffalo SCAP gene and its association with milk production traits in water buffaloes
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Molecular characterisation of the buffalo SCAP gene and its association with milk production traits in water buffaloes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *