Skip to main content Accessibility help
×
Home

The integration of emerging omics approaches to advance precision medicine: How can regulatory science help?

  • Joan E. Adamo (a1), Robert V. Bienvenu (a2), F. Owen Fields (a3), Soma Ghosh (a4), Christina M. Jones (a5), Michael Liebman (a6), Mark S. Lowenthal (a7) and Scott J. Steele (a8)...

Abstract

Building on the recent advances in next-generation sequencing, the integration of genomics, proteomics, metabolomics, and other approaches hold tremendous promise for precision medicine. The approval and adoption of these rapidly advancing technologies and methods presents several regulatory science considerations that need to be addressed. To better understand and address these regulatory science issues, a Clinical and Translational Science Award Working Group convened the Regulatory Science to Advance Precision Medicine Forum. The Forum identified an initial set of regulatory science gaps. The final set of key findings and recommendations provided here address issues related to the lack of standardization of complex tests, preclinical issues, establishing clinical validity and utility, pharmacogenomics considerations, and knowledge gaps.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The integration of emerging omics approaches to advance precision medicine: How can regulatory science help?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The integration of emerging omics approaches to advance precision medicine: How can regulatory science help?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The integration of emerging omics approaches to advance precision medicine: How can regulatory science help?
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Address for correspondence: Scott J. Steele, PhD, 265 Crittenden Blvd, CU 420708, Rochester, NY 14642-0708, USA. Email: Scott.Steele@rochester.edu

References

Hide All
1. Food and Drug Administration. Advancing Regulatory Science at FDA: A Strategic Plan (August 2011). 2011.
2. President’s Council of Advisors on Science and Technology. Priorities for Personalized Medicine. 2008.
3. National Research Council (US) Committee on a Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: National Academies Press, 2011.
4. Slatko, BE, Gardner, AF, Ausubel, FM. Overview of next-generation sequencing technologies. Current Protocols in Molecular Biology 2018; 122: e59.
5. Glenn, TC. Field guide to next-generation DNA sequencers. Molecular Ecology Resources 2011; 11: 759769.
6. Glenn, T. 2016 NGS field guide: overview [Internet], 2016 [cited May 23, 2018]. (http://www.molecularecologist.com/next-gen-fieldguide-2016/)
7. National Human Genome Research Institute. The NHGRI Genome Sequencing Program. 2018.
8. Rivers, RC, et al. Linking cancer genome to proteome: NCI’s investment into proteogenomics. Proteomics 2014; 14: 26332636.
9. Duarte, TT, Spencer, CT. Personalized proteomics: the future of precision medicine. Proteomes 2016; 4: 29.
10. Bonislawski, A. FDA, NCI memorandum indicates growing interest in proteogenomics as clinical approach [Internet], 2017 [cited May 23, 2018]. (https://www.genomeweb.com/proteomics-protein-research/fda-nci-memorandum-indicates-growing-interest-proteogenomics-clinical#.WwWS1q_rvct)
11. Baylor Genetics. Medical Genetics Metabolic Test [Internet] [cited May 23, 2018]. (https://www.bcm.edu/research/medical-genetics-labs/test_detail.cfm?testcode=4400)
12. Beger, RD, et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016; 12: 149.
13. Food and Drug Administration. Precision medicine [Internet], 2018 [cited May 23, 2018]. (https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/PrecisionMedicine-MedicalDevices/default.htm)
14. Tong, W, et al. Genomics in the land of regulatory science. Regulatory Toxicology and Pharmacology 2015; 72: 102106.
15. Jorgensen, JT, Hersom, M. Clinical and regulatory aspects of companion diagnostic development in oncology. Clinical Pharmacology and Therapeutics 2018; 103: 9991008.
16. Food and Drug Administration. FoundationFocus CDxBRC: Premarket Approval (PMA) next generation sequencing oncology panel, somatic or germline variant detection system. 2016.
17. GenomeWeb. Thermo Fisher Next-Gen Sequencing panel wins FDA approval as companion test [Internet], 2017 [cited May 23, 2018]. (https://www.genomeweb.com/molecular-diagnostics/thermo-fisher-next-gen-sequencing-panel-wins-fda-approval-companion-test)
18. Food and Drug Administration. FDA grants regular approval to dabrafenib and trametinib combination for metastatic NSCLC with BRAF V600E mutation [Internet], 2017 [cited May 23, 2018]. (https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm564331.htm)
19. Food and Drug Administration. FDA granted marketing approval to the Praxis Extended RAS Panel [Internet], 2017 [cited May 23, 2018]. (https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm565785.htm)
20. Food and Drug Administration. Summary of safety and effectiveness data (SSED) [Internet], 2017 [cited May 23, 2018]. (https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160045B.pdf)
21. Food and Drug Administration. Public Workshop – Use of Databases for Establishing the Clinical Relevance of Human Genetic Variants, 2015 [November 13, 2015]. (https://wayback.archive-it.org/7993/20170722172126/https://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm459450.htm)
22. Food and Drug Administration. Public workshop - optimizing FDA’s regulatory oversight of Next Generation Sequencing diagnostic tests public workshop, February 20, 2015 [Internet] [cited May 23, 2018]. (https://wayback.archive-it.org/7993/20170722172128/https:/www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences/ucm427296.htm)
23. Food and Drug Administration. Considerations for design, development, and analytical validation of Next Generation Sequencing-based in vitro diagnostics intended to aid in the diagnosis of suspected germline diseases; guidance for stakeholders and Food and Drug Administration staff; availability [Internet], 2018 [cited May 23, 2018]. (https://www.federalregister.gov/documents/2018/04/13/2018-07687/considerations-for-design-development-and-analytical-validation-of-next-generation-sequencing-based)
24. Food and Drug Administration. Use of public human genetic variant databases to support clinical validity for genetic and genomic-based in vitro diagnostics; guidance for stakeholders and Food and Drug Administration staff; availability [Internet], 2018 [cited May 23, 2018]. (https://www.federalregister.gov/documents/2018/04/13/2018-07686/use-of-public-human-genetic-variant-databases-to-support-clinical-validity-for-genetic-and)
25. Food and Drug Administration. precisionFDA [Internet], 2018 [cited 2018 May 23]. (https://precision.fda.gov/)
26. Kuo, T-T, Kim, H-E, Ohno-Machado, L. Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association 2017; 24: 12111220.
27. Durmowicz, AG, et al. The U.S. Food and Drug Administration’s experience with ivacaftor in cystic fibrosis. Establishing efficacy using in vitro data in lieu of a clinical trial. Annals of the American Thoracic Society 2018; 15: 12.
28. Smith, ED, et al. Classification of genes: standardized clinical validity assessment of gene-disease associations aids diagnostic exome analysis and reclassifications. Human Mutation 2017; 38: 600608.
29. Li, MM, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of Molecular Diagnostics 2017; 19: 423.
30. Richards, S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015; 17: 405424.
31. Vicini, P, et al. Precision medicine in the age of big data: the present and future role of large-scale unbiased sequencing in drug discovery and development. Clinical Pharmacology and Therapeutics 2016; 99: 198207.
32. Schmidt, C. Mammaprint reveals who can skip chemotherapy for breast cancer. Journal of the National Cancer Institute 2016; 108: 78.
33. Becker, AM, et al. SLE peripheral blood B cell, T cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interferon signature. PLoS One 2013; 8: e67003.
34. Food and Drug Administration. In vitro diagnostic multivariate index assays - draft guidance for industry, clinical laboratories, and FDA staff [Internet], 2007 [cited May 23, 2018]. (https://www.fda.gov/RegulatoryInformation/Guidances/ucm079148.htm)
35. Darwich, AS, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clinical Pharmacology and Therapeutics 2017; 101: 646656.
36. O’Donnell, PH, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clinical Pharmacology and Therapeutics 2017; 102: 859869.
37. Food and Drug Administration. Software as a Medical Device (SAMD): Clinical Evaluation - Guidance for Industry and Food and Drug Administration Staff, in Federal Register, 2017, pp. 57994–57996.
38. Vassy, JL, Korf, BR, Green, RC. How to know when physicians are ready for genomic medicine. Science Translational Medicine 2015; 7: 287fs19.
39. Adamo, JE, Wilhelm, EE, Steele, SJ. Advancing a vision for regulatory science training. Clinical and Translational Science 2015; 8: 615618.

Keywords

Type Description Title
WORD
Supplementary materials

Adamo et al. supplementary material
Appendix

 Word (128 KB)
128 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed