Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T03:35:30.720Z Has data issue: false hasContentIssue false

3296 Endometrial cancer microbiome biomarker for disease detection and microbial role in the disease

Published online by Cambridge University Press:  26 March 2019

Marina Walther-Antonio
Affiliation:
Mayo Clinic
Dana Walsh
Affiliation:
Mayo Clinic
Yuguang Liu
Affiliation:
Mayo Clinic
Janet Yao
Affiliation:
Mayo Clinic
Nicholas Chia
Affiliation:
Mayo Clinic
Heidi Nelson
Affiliation:
Mayo Clinic
Andrea Mariani
Affiliation:
Mayo Clinic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: Our primary objective is to determine whether the bacteria exerts its effect intra- or extra-cellularly. We have genomic and microscopy preliminary evidence indicating that the bacteria is capable of invading endometrial cells. Our secondary objective is to identify what type of impact the bacteria have on the host cells and whether they are capable of transforming the host cells from a benign into a malignant phenotype. We are currently testing a putative mechanism by which the bacteria may cause the overexpression of the hypoxia inducible factor (HIF), a hallmark of endometrial cancer. METHODS/STUDY POPULATION: We are utilizing our custom built optofluidics platform (microfluidics platform incorporated into an advanced microscope with optical laser tweezers) to isolate single cells from the endometrial tissues of 150 patients with and without endometrial cancer. We are utilizing single cell whole genome amplification followed by qPCR to identify if the bacteria is present intracellularly. We are coupling this procedure with standard microbiological invasion assays with endometrial cell line cultures and P.somerae. We are also utilizing our optofluidics platform to perform single cell transcriptomic amplification, followed by sequencing of cells invaded or in the presence of the bacteria to determine the impact in the transcriptome of the host cell. We are coupling this with western blots of factors hypothesized to be impacted by the bacteria in the overexpression of HIF. RESULTS/ANTICIPATED RESULTS: Based on our preliminary data we anticipate to find evidence that P.somerae is invading the host cells, in particular the cells in tumor tissues. We also expect to find that the intracellular presence of the bacteria is causing the overexpression of the HIF pathway, hence resulting in a cancerous phenotype. DISCUSSION/SIGNIFICANCE OF IMPACT: Our long-term goal is to develop primary prevention strategies that will reduce endometrial cancer incidence rates. A confirmation of our hypothesis could suggest that it is sufficient for endometrial cancer prevention efforts to eliminate P.somerae, in line with gastric and cervical cancer efforts. It could also mean that targeting P.somerae in cancer treatment is necessary to contain the disease and prevent recurrence.

Type
Mechanistic Basic to Clinical
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Association for Clinical and Translational Science 2019