Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:25:13.605Z Has data issue: false hasContentIssue false

2070 High-intensity focused ultrasound (HIFU) can be used synergistically with tamoxifen to overcome resistance in preclinical and patient derived xenograft models

Published online by Cambridge University Press:  21 November 2018

Rachel Sabol
Affiliation:
LA CaTS, Tulane University School of Medicine
Hakm Murad
Affiliation:
Tulane School of Science and Engineering
Matthew Burow
Affiliation:
Tulane School of Medicine
Damir Khismatullin
Affiliation:
LA CaTS, Tulane University School of Medicine
Bruce Bunnell
Affiliation:
Tulane School of Medicine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: The goal of this study is to evaluate a potential strategy to overcome tamoxifen (tam) resistance by using tam in combination with high-intensity focused ultrasound (HIFU). Tam is the most commonly used anti-cancer therapeutic agent in estrogen receptor positive (ER+) breast cancer (BC) which accounts for ~70% of BC cases. Tam treatment decreases a woman’s risk of recurrence by 50%; however, BC that is initially responsive to tam often develops resistance. METHODS/STUDY POPULATION: HIFU deposits acoustic energy locally to a cancerous region, which induces strong vibrations of molecules inside and outside of the cells. The resulting absorption causes rapid heating and mechanical disruption. This clinically relevant, noninvasive, and nonionizing physical force modality, has been shown to synergistically enhance chemical anticancer therapies. RESULTS/ANTICIPATED RESULTS: In this study we found that treatment of MCF7 cells with HIFU and tam has additive antiproliferative effects and mediates increased cell death. Additionally, we used tam resistant (TR) MCF7 cells that had been exposed to low-dose tam over time until they acquired resistance. When MCF7 TR are treated with tam there is no change in viability; however, treatment with HIFU in combination with tam decreased viability of both MCF7 and MCF7 TR to 19% and the viability of the cell lines was indistinguishable. We next evaluated the effect on MCF7 Y537S mutant ESR1, where ER is mutated to be constitutively active. Treatment of MCF7 Y537S had no significant decrease in viability of combination therapy compared with viability after HIFU alone. Analysis of ERalpha gene expression showed that HIFU treatment increased ERalpha expression in MCF7 TR cells, thus resensitizing these cells to tam and allowing these therapies to work synergistically. Our team developed a system to evaluate the potential of this combination of therapies in a patient-derived xenografts (PDX) model. PDX have emerged as a novel translational tool for cancer research with the potential to more accurately recapitulate the molecular and behavioral aspects of cancer. The WHIM20 PDX is a tamoxifen resistant tumor where the patient developed the Y537S mutation in ESR1. Ex vivo experiments on PDX tumor pieces demonstrated that combination therapy of HIFU and tam work synergistically to increase cell death of these tumors. Further, cryogenic-scanning electron microscopy was utilized to directly demonstrate the physical disruption to both cellular and tumor microenvironment post exposure to combination treatment. DISCUSSION/SIGNIFICANCE OF IMPACT: These studies present a novel translational strategy to overcome tamoxifen resistance in ER+BC.

Type
Basic/Translational Science/Team Science
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2018