Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-24T01:25:55.887Z Has data issue: false hasContentIssue false

Type Transition of Simple Random Walks on Randomly Directed Regular Lattices

Published online by Cambridge University Press:  30 January 2018

Massimo Campanino*
Affiliation:
Università degli Studi di Bologna
Dimitri Petritis*
Affiliation:
Université de Rennes 1
*
Postal address: Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta San Donato 5, I-40126 Bologna, Italy. Email address: massimo.campanino@unibo.it
∗∗ Postal address: Institut de Recherche Mathématique, Université de Rennes I, Campus de Beaulieu, F-35042 Rennes Cedex, France. Email address: dimitri.petritis@univ-rennes1.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Simple random walks on a partially directed version of Z2 are considered. More precisely, vertical edges between neighbouring vertices of Z2 can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Bhattacharya, R. and Waymire, E. C. (2007). A Basic Course in Probability Theory. Springer, New York.Google Scholar
Biggs, N. (1974). Algebraic Graph Theory (Camb. Tracts Math. 67). Cambridge University Press.CrossRefGoogle Scholar
Campanino, M. and Petritis, D. (2003). Random walks on randomly oriented lattices. Markov Process. Relat. Fields 9, 391412.Google Scholar
Campanino, M. and Petritis, D. (2004). On the physical relevance of random walks: an example of random walks on a randomly oriented lattice. In Random Walks and Geometry, De Gruyte, Berlin, pp. 393411.CrossRefGoogle Scholar
Chung, F. R. K. (1997). Spectral Graph Theory (CBMS Regional Conf. Ser. Math. 92). American Mathematical Society, Providence, RI.Google Scholar
Cvetković, D. M., Doob, M. and Sachs, H. (1995). Spectra of Graphs, 3rd edn. Johann Ambrosius Barth, Heidelberg.Google Scholar
De Loynes, B. (2012). Marche aléatoire sur un di-graphe et frontière de Martin. C. R. Math. Acad. Sci. Paris 350, 8790.CrossRefGoogle Scholar
Devulder, A. and Pène, F. (2013). Random walk in random environment in a two-dimensional stratified medium with orientations. Electron. J. Prob. 18, no. 18.CrossRefGoogle Scholar
Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks (Carus Math. Monogr. 22). Mathematical Association of America, Washington, DC.CrossRefGoogle Scholar
Flanders, H. (1971). Infinite networks. I: Resistive networks. IEEE Trans. Circuit Theory 18, 326331.CrossRefGoogle Scholar
Flanders, H. (1972). Infinite networks. II. Resistance in an infinite grid. J. Math. Anal. Appl. 40, 3035.CrossRefGoogle Scholar
Guillotin-Plantard, U. and Le Ny, A. (2008). A functional limit theorem for a 2{D}-random walk with dependent marginals. Electron. Commun. Prob. 13, 337351.CrossRefGoogle Scholar
Guillotin-Plantard, N. and Le Ny, A. (2008). Transient random walks on 2{D}-oriented lattices. Theory Prob. Appl. 52, 699711.CrossRefGoogle Scholar
Jorgensen, P. E. T. and Pearse, E. P. J. (2009). Operator theory of electricical resistance networks. Preprint. Available at http://arxiv.org/abs/0806.3881.Google Scholar
Matheron, G. and De Marsily, G. (1980). Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 16, 901917.CrossRefGoogle Scholar
Pène, F. (2009). Transient random walk in {\BBZ}^2 with stationary orientations. ESAIM Prob. Statist. 13, 417436.CrossRefGoogle Scholar
Pete, G. (2008). Corner percolation on {\BBZ}^2 and the square root of 17. Ann. Prob. 36, 17111747.CrossRefGoogle Scholar
Port, S. C. (1994). Theoretical Probability for Applications. John Wiley, New York.Google Scholar
Redner, S. (1997). Survival probability in a random velocity field. Phys. Rev. E 56, 49674972.CrossRefGoogle Scholar
Soardi, P. M. (1994). Potential Theory on Infinite Networks (Lecture Notes Math. 1590). Springer, Berlin.CrossRefGoogle Scholar
Weyl, H. (1923). Repartición de corriente en una red conductora. Revista Matemática Hispano-Americana 5, 153164.Google Scholar
Woess, W. (2000). Random Walks on Infinite Graphs and Groups (Camb. Tracts Math. 138). Cambridge University Press.CrossRefGoogle Scholar