Skip to main content Accessibility help
×
Home

Stochastic comparison of point random fields

  • Hans-Otto Georgii (a1) and Torsten Küneth (a1)

Abstract

We give an alternative proof of a point-process version of the FKG–Holley–Preston inequality which provides a sufficient condition for stochastic domination of probability measures, and for positive correlations of increasing functions.

Copyright

Corresponding author

Postal address: Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München, Germany. E-mail: georgii@rz.mathematik.uni-muenchen.de

References

Hide All
[1] Baddeley, A. J. and Van Lieshout, M. N. M. (1995) Area-interaction point processes. Ann. Inst. Statist. Math. 46, 601619.
[2] Batty, C. J. K. and Bollmann, H. W. (1980) Generalized Holley-Preston inequalities on measure spaces and their products. Z. Wahrscheinlichkeitsth. 53, 157174.
[3] Chayes, J. T., Chayes, L. and Kotecký, R. (1995) The analysis of the Widom-Rowlinson model by stochastic geometric methods. Commun. Math. Phys. 172, 551569.
[4] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971) Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89103.
[5] Georgii, H. O. and Häggström, O. (1996) Phase transitions in continuum Potts models. Commun. Math. Phys. 181, 507528.
[6] Harris, T. E. (1960) A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Phil. Soc. 56, 1320.
[7] Holley, R. (1974) Remarks on the FKG inequalities. Commun. Math. Phys. 36, 227232.
[8] Janson, S. (1984) Bounds on the distributions of extremal values of a scanning process. Stoch. Proc. Appl. 18, 313328.
[9] Kallenberg, O. (1983) Random Measures. 3rd edn. Akademie, Berlin.
[10] Lebowitz, J. L. and Monroe, J. L. (1972) Inequalities for higher order Ising spins and continuum fluids. Commun. Math. Phys. 28, 301311.
[11] Lindvall, T. (1992) Lectures on the Coupling Method . Wiley, New York.
[12] Matthes, K., Warmuth, W. and Mecke, J. (1979) Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin. Math. Nachr. 88, 117127.
[13] Penrose, M. D. (1991) On a continuum percolation model. Adv. Appl. Prob. 23, 536556.
[14] Preston, C. J. (1974) A generalization of the FKG inequalities. Commun. Math. Phys. 36, 233242.
[15] Preston, C. J. (1976) Spatial birth-and-death processes. Bull. Inst. Int. Statist. 46, 371391.
[16] Ruelle, D. (1969) Statistical Mechanics. Rigorous Results . Benjamin, New York.
[17] Widom, B. and Rowlinson, J. S. (1970) New model for the study of liquid-vapor phase transitions. J. Chem. Phys. 52, 16701684.

Keywords

MSC classification

Stochastic comparison of point random fields

  • Hans-Otto Georgii (a1) and Torsten Küneth (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed