Abate, J., and Whitt, W. (1987a). Transient behavior of regulated Brownian motion. I. Starting at the origin. Adv. Appl. Prob.
19, 560–598.

Abate, J., and Whitt, W. (1987b). Transient behavior of regulated Brownian motion. II. Nonzero initial conditions. Adv. Appl. Prob.
19, 599–631.

Abramowitz, M., and Stegun, I. A. (1972). Handbook of Mathematical Functions. Dover, New York.

Ahn, D.-H., and Gao, B. (1999). A parametric nonlinear model of term structure dynamics. Rev. Financial Studies
12, 721–762.

Alili, L., Patie, P., and Pedersen, J. L. (2003). Hitting time of a fixed level by an OU process. Working Paper, ETH Zurich.

Borodin, A. N., and Salminen, P. (1996). Handbook of Brownian Motion. Birkhäuser, Boston, MA.

Buchholz, H. (1969). The Confluent Hypergeometric Function. Springer, Berlin.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992). An empirical comparison of alternative models of the short rate. J. Finance
47, 1209–1228.

Coffman, E. G., Puhalskii, A. A., and Reiman, M. I. (1998). Polling systems in heavy traffic: a Bessel process limit. Math. Operat. Res.
23, 257–304.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica
53, 385–407.

Davydov, D., and Linetsky, V. (2003). Pricing options on scalar diffusions: an eigenfunction expansion approach. Operat. Res.
51, 185–209.

Delbaen, F., and Yor, M. (2002). Passport options. Math. Finance
12, 299–328.

Duffie, D., and Singleton, K. (1999). Modeling term structures of defaultable bonds. Rev. Financial Studies
12, 687–720.

Feller, W. (1951). Two singular diffusion problems. Ann. Math.
54, 173–82.

Göing-Jaeschke, A., and Yor, M. (2003). A survey and some generalizations of Bessel processes. Bernoulli
9, 313–349.

Gorovoi, V., and Linetsky, V. (2004). Black's model of interest rates as options, eigenfunction expansions and Japanese interest rates. Math. Finance
14, 49–78.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies
6, 327–343.

Heston, S. L. (1997). A simple new formula for options with stochastic volatility. Working Paper, Washington University.

Itô, K. and McKean, H. P. (1974). Diffusion Processes and Their Sample Paths, 2nd edn.
Springer, Berlin.

Kendall, D.G. (1974). Pole-seeking Brownian motion and bird navigation. J. R. Statist. Soc. B
36, 365–417.

Kijima, M. (1997). Markov Processes for Stochastic Modeling. Chapman and Hall, London.

Kou, S. C., and Kou, S. G. (2002). A diffusion model for growth stocks. To appear in Math. Operat. Res.

Kyprianou, A. E., and Pistorius, M. R. (2003). Perpetual options and Canadization through fluctuation theory. Ann. Appl. Prob.
13, 1077–1098.

Langer, H., and Schenk, W. S. (1990). Generalized second-order differential operators, corresponding gap diffusions and superharmonic transformations. Math. Nachr.
148, 7–45.

Levitan, B. M., and Sargsjan, I. S. (1975). Introduction to Spectral Theory. American Mathematical Society, Providence, RI.

Lewis, A. (1994). Three expansion regimes for interest rate term structure models. Working paper.

Lewis, A. (1998). Applications of eigenfunction expansions in continuous-time finance. Math. Finance
8, 349–383.

Lewis, A. (2000). Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, CA.

Linetsky, V. (2003). Computing hitting time densities for OU and CIR processes: applications to mean-reverting models. To appear in J. Comput. Finance. Available at http://users.lems.nwu.edu/∼linetsky/.
Matsumoto, H., and Yor, M. (2000). An analogue of Pitman's 2*M-X* theorem for exponential Wiener functionals. I. A time-inversion approach. Nagoya Math. J.
159, 125–166.

McKean, H. (1956). Elementary solutions for certain parabolic partial differential equations. Trans. Amer. Math. Soc.
82, 519–548.

Morse, P. M., and Feshbach, H. (1953). Methods of Theoretical Physics, Vol. 2. McGraw-Hill, New York.

Pitman, J.W., and Yor, M. (1981). Bessel processes and infinitely divisible laws. In Stochastic Integrals (Lecture Notes Math. 851), ed. Williams, D., Springer, Berlin, pp. 285–370.

Pitman, J.W., and Yor, M. (1982). A decomposition of Bessel bridges. Z. Wahrscheinlichkeitsth.
59, 425–457.

Revuz, D., and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn, Springer, Berlin.

Slater, L. J. (1960). Confluent Hypergeometric Functions. Cambridge University Press.

Titchmarsh, E. C. (1962). Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon, Oxford.

Watanabe, S. (1975). On time inversion of one-dimensional diffusion processes. Z. Wahrscheinlichkeitsth.
31, 115–124.

Yor, M. (1984). On square-root boundaries for Bessel processes, and pole-seeking Brownian motion. Stochastic Analysis and Applications (Lecture Notes Math. 1095), eds Truman, A. and Williams, D., Springer, Berlin, pp. 100–107.