[1]
Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists And Engineers. I: Asymptotic Methods and Perturbation Theory. Springer, New York.

[2]
Bharucha-Reid, A. T. and Sambandham, M. (1986).
*Random Polynomials*. Probability and Mathematical Statistics. Academic Press, Orlando, FL.

[3]
Bloch, A. and Pólya, G. (1932). On the roots of certain algebraic equations. Proc. London Math. Soc. 33, 102–114.

[4]
Broom, M., Cannings, C. and Vickers, G.T. (1997). Multi-player matrix games. Bull. Math. Biol. 59, 931–952.

[5]
Butez, R. and Zeitouni, O. (2017). Universal large deviations for Kac polynomials. Electron. Commun. Probab. 22, 1–10.

[6]
Can, V. H. and Pham, V. H. (2017). Persistence probability of random Weyl polynomial. Preprint, arXiv:1710.01090. [7]
Dembo, A. and Mukherjee, S. (2015). No zero-crossings for random polynomials and the heat equation. Ann. Probab. 43, 85–118.

[8]
Dembo, A. and Mukherjee, S. (2017). Persistence of Gaussian processes: non-summable correlations. Prob. Theory Relat. Fields 169, 1007–1039.

[9]
Dembo, A., Poonen, B., Shao, Q.-M. and Zeitouni, O. (2002). Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15, 857–892.

[10]
Do, Y. and Vu, V. (2017) Central limit theorems for the real zeros of Weyl polynomials. Preprint, arXiv:1707.09276. [11]
Duong, M. H. and Han, T. A. (2016). On the expected number of equilibria in a multi-player multi-strategy evolutionary game. Dyn. Games Appl. 6, 324–346.

[12]
Duong, M. H. and Han, T. A. (2016). Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games. J. Math, Biol
*,* 73, 1727–1760.

[13]
Duong, M. H., Tran, H. M. and Han, T. A. (2017). On the distribution of the number of internal equilibria in random evolutionary games. Preprint, arXiv:1711.03848. [14]
Duong, M. H., Tran, H. M. and Han, T. A. (2017). On the expected number of internal equilibria in random evolutionary games with correlated payoff matrix. Preprint, arXiv:1708.01672. [15]
Edelman, A. and Kostlan, E. (1995). How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 32, 1–37.

[16]
Farahmand, K. (1998).
*Topics in Random Polynomials*. Chapman & Hall/CRC Research Notes in Mathematics Series. Taylor & Francis, London.

[17]
Fudenberg, D. and Harris, C. (1992). Evolutionary dynamics with aggregate shocks. J. Econom. Theory 57, 420–441.

[18]
Fyodorov, Y. V. (2004). Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92, 240601.

[19]
Fyodorov, Y. V. and Khoruzhenko, B. A. (2016). Nonlinear analogue of the May–Wigner instability transition. Proc. Nat. Acad. Sci. 113 6827–6832.

[20]
Fyodorov, Y. V. and Nadal, C. (2012). Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy–Widom distribution. Phys. Rev. Lett. 109, 167203.

[21]
Gokhale, C. S. and Traulsen, A. (2010). Evolutionary games in the multiverse. Proc. Natl. Acad. Sci. U.S.A. 107, 5500–5504.

[22]
Gokhale, C. S. and Traulsen, A. (2014). Evolutionary multiplayer games. Dyn. Games Appl. 4, 468–488.

[23]
Gross, T, Rudolf, L., Levin, S. A. and Dieckmann, U. (2009). Generalized models reveal stabilizing factors in food webs. Science 325, 747–750.

[24]
Han, T. A., Traulsen, A. and Gokhale, C. S. (2012). On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theoret. Pop. Biol. 81, 264–272.

[25]
Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press.

[26]
Li, W. V. and Shao, Q.-M. (2005). Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1, 95–106.

[27]
Littlewood, J. E. and Offord, A. C. (1939). On the number of real roots of a random algebraic equation. II. Math. Proc. Cambridge Philosoph. Soc. 35, 133–148.

[28]
Littlewood, J. E. and Offord, A. C. (1948). On the distribution of zeros and *a*-values of a random integral function (II). Ann. Math. 49, 885–952.

[29]
Lubinsky, D. S., Pritsker, I. E. and Xie, X. (2018). Expected number of real zeros for random orthogonal polynomials. Math. Proc. Cambridge Philosoph. Soc. 164, 47–66.

[30]
May, R. M. (2001). Stability and Complexity in Model Ecosystems, Vol. 6. Princeton University Press.

[31]
Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature 246, 15–18.

[32]
Nguyen, H., Nguyen, O. and Vu, V. (2016). On the number of real roots of random polynomials. Commun. Contemp. Math. 18, 1550052.

[33]
Schehr, G. and Majumdar, S. (2008). Real roots of random polynomials and zero crossing properties of diffusion equation. J. Statist. Phys. 132, 235–273.

[34]
Sigmund, K. (2010). The Calculus of Selfishness. Princeton University Press.

[35]
Tao, T. and Vu, V. (2015). Local universality of zeroes of random polynomials. Internat. Math. Res. Not. 2015, 5053–5139.

[36]
Wang, X.-S. and Wong, R. (2012). Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. 10, 215–235.