Skip to main content Accessibility help
×
Home

Persistence probability of a random polynomial arising from evolutionary game theory

  • Van Hao Can (a1), Manh Hong Duong (a2) and Viet Viet Hung Pham (a3)

Abstract

We obtain an asymptotic formula for the persistence probability in the positive real line of a random polynomial arising from evolutionary game theory. It corresponds to the probability that a multi-player two-strategy random evolutionary game has no internal equilibria. The key ingredient is to approximate the sequence of random polynomials indexed by their degrees by an appropriate centered stationary Gaussian process.

Copyright

Corresponding author

*Postal address: Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, 10307 Hanoi, Vietnam.
**Postal address: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

References

Hide All
[1] Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists And Engineers. I: Asymptotic Methods and Perturbation Theory. Springer, New York.
[2] Bharucha-Reid, A. T. and Sambandham, M. (1986). Random Polynomials. Probability and Mathematical Statistics. Academic Press, Orlando, FL.
[3] Bloch, A. and Pólya, G. (1932). On the roots of certain algebraic equations. Proc. London Math. Soc. 33, 102114.
[4] Broom, M., Cannings, C. and Vickers, G.T. (1997). Multi-player matrix games. Bull. Math. Biol. 59, 931952.
[5] Butez, R. and Zeitouni, O. (2017). Universal large deviations for Kac polynomials. Electron. Commun. Probab. 22, 110.
[6] Can, V. H. and Pham, V. H. (2017). Persistence probability of random Weyl polynomial. Preprint, arXiv:1710.01090.
[7] Dembo, A. and Mukherjee, S. (2015). No zero-crossings for random polynomials and the heat equation. Ann. Probab. 43, 85118.
[8] Dembo, A. and Mukherjee, S. (2017). Persistence of Gaussian processes: non-summable correlations. Prob. Theory Relat. Fields 169, 10071039.
[9] Dembo, A., Poonen, B., Shao, Q.-M. and Zeitouni, O. (2002). Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15, 857892.
[10] Do, Y. and Vu, V. (2017) Central limit theorems for the real zeros of Weyl polynomials. Preprint, arXiv:1707.09276.
[11] Duong, M. H. and Han, T. A. (2016). On the expected number of equilibria in a multi-player multi-strategy evolutionary game. Dyn. Games Appl. 6, 324346.
[12] Duong, M. H. and Han, T. A. (2016). Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games. J. Math, Biol , 73, 17271760.
[13] Duong, M. H., Tran, H. M. and Han, T. A. (2017). On the distribution of the number of internal equilibria in random evolutionary games. Preprint, arXiv:1711.03848.
[14] Duong, M. H., Tran, H. M. and Han, T. A. (2017). On the expected number of internal equilibria in random evolutionary games with correlated payoff matrix. Preprint, arXiv:1708.01672.
[15] Edelman, A. and Kostlan, E. (1995). How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 32, 137.
[16] Farahmand, K. (1998). Topics in Random Polynomials. Chapman & Hall/CRC Research Notes in Mathematics Series. Taylor & Francis, London.
[17] Fudenberg, D. and Harris, C. (1992). Evolutionary dynamics with aggregate shocks. J. Econom. Theory 57, 420441.
[18] Fyodorov, Y. V. (2004). Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92, 240601.
[19] Fyodorov, Y. V. and Khoruzhenko, B. A. (2016). Nonlinear analogue of the May–Wigner instability transition. Proc. Nat. Acad. Sci. 113 68276832.
[20] Fyodorov, Y. V. and Nadal, C. (2012). Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy–Widom distribution. Phys. Rev. Lett. 109, 167203.
[21] Gokhale, C. S. and Traulsen, A. (2010). Evolutionary games in the multiverse. Proc. Natl. Acad. Sci. U.S.A. 107, 55005504.
[22] Gokhale, C. S. and Traulsen, A. (2014). Evolutionary multiplayer games. Dyn. Games Appl. 4, 468488.
[23] Gross, T, Rudolf, L., Levin, S. A. and Dieckmann, U. (2009). Generalized models reveal stabilizing factors in food webs. Science 325, 747750.
[24] Han, T. A., Traulsen, A. and Gokhale, C. S. (2012). On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theoret. Pop. Biol. 81, 264272.
[25] Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press.
[26] Li, W. V. and Shao, Q.-M. (2005). Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1, 95106.
[27] Littlewood, J. E. and Offord, A. C. (1939). On the number of real roots of a random algebraic equation. II. Math. Proc. Cambridge Philosoph. Soc. 35, 133148.
[28] Littlewood, J. E. and Offord, A. C. (1948). On the distribution of zeros and a-values of a random integral function (II). Ann. Math. 49, 885952.
[29] Lubinsky, D. S., Pritsker, I. E. and Xie, X. (2018). Expected number of real zeros for random orthogonal polynomials. Math. Proc. Cambridge Philosoph. Soc. 164, 4766.
[30] May, R. M. (2001). Stability and Complexity in Model Ecosystems, Vol. 6. Princeton University Press.
[31] Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature 246, 1518.
[32] Nguyen, H., Nguyen, O. and Vu, V. (2016). On the number of real roots of random polynomials. Commun. Contemp. Math. 18, 1550052.
[33] Schehr, G. and Majumdar, S. (2008). Real roots of random polynomials and zero crossing properties of diffusion equation. J. Statist. Phys. 132, 235273.
[34] Sigmund, K. (2010). The Calculus of Selfishness. Princeton University Press.
[35] Tao, T. and Vu, V. (2015). Local universality of zeroes of random polynomials. Internat. Math. Res. Not. 2015, 50535139.
[36] Wang, X.-S. and Wong, R. (2012). Asymptotics of orthogonal polynomials via recurrence relations. Anal. Appl. 10, 215235.

Keywords

MSC classification

Persistence probability of a random polynomial arising from evolutionary game theory

  • Van Hao Can (a1), Manh Hong Duong (a2) and Viet Viet Hung Pham (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed