Skip to main content Accessibility help

On the inverse of the first hitting time problem for bidimensional processes

  • Mario Lefebvre (a1)


Bidimensional processes defined by dx(t) = ρ (x, y)dt and dy(t) = m(x, y)dt + [2v(x, y)]1/2dW(t), where W(t) is a Wiener process, are considered. Let T(x, y) be the first time the process (x(t), y(t)), starting from (x, y), hits the boundary of a given region in . A theorem is proved that gives necessary and sufficient conditions for a given complex function to be considered as the moment generating function of T(x, y) for some bidimensional diffusion process. Examples are given where the theorem is used to construct explicit solutions to first hitting time problems and to compute the infinitesimal moments that correspond to the chosen moment generating function.


Corresponding author

Postal address: Département de mathématiques et de génie industriel, École Polytechnique, C. P. 6079, Succursale Centre-ville, Montréal, Québec, Canada H3C 3A7.


Hide All

Research supported by the Natural Sciences and Engineering Research Council of Canada and by the fund FCAR of Québec.



Hide All
Abramowitz, M. and Stegun, I. A. (1965) Handbook of Mathematical Functions. Dover, New York.
Arnold, L. (1974) Stochastic Differential Equations: Theory and Applications. Wiley, New York.
Capocelli, R. M. and Ricciardi, L. M. (1972) On the inverse of the first passage time probability problem. J. Appl. Prob. 9, 270287.
Feller, W. (1954) Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 131.
Fleming, W. H. and Rishel, R. W. (1975) Deterministic and Stochastic Optimal Control. Springer, Berlin.
Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1988) A new approach to the construction of first-passage-time densities. Cybernet. Syst. 88, 375381.
Gutiérrez Jáimez, R., Juan Gonzalez, A. and Román Román, P. (1991) Construction of first-passage-time densities for a diffusion process which is not necessarily time-homogeneous. J. Appl. Prob. 28, 903909.
Hesse, C. H. (1991) The one-sided barrier problem for an integrated Ornstein-Uhlenbeck process. Commun. Statist.-Stock Models 7, 447480.
Iyengar, S. (1985) Hitting lines with a two-dimensional Brownian motion. SIAM J. Appl. Math. 45, 983989.
Kannan, D. (1979) An Introduction to Stochastic Processes. North Holland, New York.
Karlin, S. and Taylor, H. (1981) A Second Course in Stochastic Processes. Academic Press, New York.
Lachal, A. (1990) Sur l'intégrale du mouvement brownien. C. R. Acad. Sci. Paris Série I Math. 311, 461464.
Lefebvre, M. (1989a) First-passage densities of a two-dimensional process. SIAM J. Appl. Math. 49, 15141523.
Lefebvre, M. (1989b) Moment generating function of a first hitting place for the integrated Ornstein- Uhlenbeck process. Stoch. Proc. Appl. 32, 281287.
Lefebvre, M. (1991a) Forcing a stochastic process to stay in or to leave a given region. Ann. Appl. Prob. 1, 167172.
Lefebvre, M. (1991b) Quelques résultats au sujet des densités de premier passage pour des processus de diffusion. Ann. Sci. Math. Québec 15, 165175.
Lefebvre, M. and Mazigh, M. (1995) Stochastic bargaining models. J. Optim. Theory Appl. 84, 377391.
Lefebvre, M. and Whittle, P. (1988) Survival optimization for a dynamic system. Ann. Sci. Math. Québec 12, 101119.
Rishel, R. (1991) Controlled wear process: modeling optimal control. IEEE Trans. Automat. Cont. 36, 11001102.
Whittle, P. (1982) Optimization over Time. Vol. I. Wiley, Chichester.


MSC classification

On the inverse of the first hitting time problem for bidimensional processes

  • Mario Lefebvre (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed