Skip to main content Accessibility help
×
Home

A note on the background of several Bonferroni–Galambos-type inequalities

  • Tamás F. Móri (a1) and Gábor J. Székely (a1)

Abstract

Let A 1, A 2, · ··, An be events on a probability space. Denote by Sk the kth binomial moment of the number M n of those A 's which occur. Sharp lower and upper bounds of Sm will be given in terms of Sk and Sl. The same method can be applied for proving Bonferroni–Galambos-type inequalities.

Copyright

Corresponding author

Postal address: L. Eötvös University, Mathematical Institute, Budapest, Múzeum krt. 6–8, H-1088, Hungary.

References

Hide All
Dawson, D. A. and Sankoff, D. (1967) An inequality for probabilities. Proc. Amer. Math. Soc. 18, 504507.
Erdös, P., Neveu, J. and Renyi, A. (1963) An elementary inequality between the probabilities of events. Math. Scand. 13, 99104.
Fréchet, M. (1940/43) Les probabilités associées à un système d'événements compatibles et dépendants. Actualités Scientiques et Industrielles , Nos. 859, 942, Paris.
Galambos, J. (1975) Method for proving Bonferroni type inequalities. J. London Math. Soc. (2) 9, 561564.
Galambos, J. (1977) Bonferroni inequalities. Ann. Prob. 5, 577581.
Galambos, J. (1978) The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.
Galambos, J. and Mucci, R. (1980) Inequalities for linear combinations of binomial moments. Publ. Math. (Debrecen) 27, 263268.
Kounias, S. and Damianou, Ch. (1977) On an inequality of P. Erdos, J. Neveu, A. Rényi and S. Zubrzycki. In Applications and research in information systems and sciences (Proc. First Internat. Conf., Univ. Patras, 1976), Hemisphere, Washington DC, 3, 812814.
Kwerel, S. M. (1975) Most stringent bounds on aggregated probabilities of partially specified dependent probability systems. J. Amer. Statist. Assoc. 70, 472479.
Meyer, R. M. (1969) Note on a ‘multivariate’ form of the Bonferroni's inequalities. Ann. Math. Statist. 40, 692693.
Sathe, Y. S., Pradhan, M. and Shah, S. P. (1980) Inequalities for the probability of the occurrence of at least m out of n events. J. Appl. Prob. 17, 11271132.
Sobel, ?. and Uppuluri, V. R. R. (1972) On Bonferroni-type inequalities of the same degree for the probability of unions and intersections. Ann. Math. Statist. 43, 15491558.
Zubrzycki, S. (1954) Les inégalités entre les moments des variables aléatoires equivalentes. Studia Math. 14, 232242.

Keywords

A note on the background of several Bonferroni–Galambos-type inequalities

  • Tamás F. Móri (a1) and Gábor J. Székely (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed