Skip to main content Accessibility help
×
Home

Mixture Representations of Inactivity Times of Conditional Coherent Systems and their Applications

  • Zhengcheng Zhang (a1)

Abstract

In this paper we obtain several mixture representations of the reliability function of the inactivity time of a coherent system under the condition that the system has failed at time t (> 0) in terms of the reliability functions of inactivity times of order statistics. Some ordering properties of the inactivity times of coherent systems with independent and identically distributed components are obtained, based on the stochastically ordered coefficient vectors between systems.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mixture Representations of Inactivity Times of Conditional Coherent Systems and their Applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mixture Representations of Inactivity Times of Conditional Coherent Systems and their Applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mixture Representations of Inactivity Times of Conditional Coherent Systems and their Applications
      Available formats
      ×

Copyright

Corresponding author

Postal address: School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, 730070 Lanzhou, P. R. China. Email address: zhangzc@mail.lzjtu.cn

Footnotes

Hide All

Research supported by the Science and Technology Program of Gansu Province, China (project no. 1010RJZA076).

Footnotes

References

Hide All
[1] Asadi, M. (2006). On the mean past lifetime of components of a parallel system. J. Statist. Planning Infer. 136, 11971206.
[2] Barlow, R. E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.
[3] Bhattacharya, D. and Samaniego, F. J. (2010). On estimating component characteristics from system failure-time data. Naval Res. Logistics 57, 380389.
[4] Boland, P. J. and Samaniego, F. J. (2004). The signature of a coherent system and its applications in reliability. In Mathematical Reliability: An Expository Perspective, (Internat. Ser. Operat. Res. Management Sci.), eds Soyer, R., Mazzuchi, T. and Singpurwalla, N., Kluwer, Boston, MA, pp. 330.
[5] Esary, J. D. and Marshall, A. W. (1970). Coherent life functions. SIAM J. Appl. Math. 18, 810814.
[6] Gåsemyr, J. and Natvig, B. (1998). The posterior distribution of the parameters of component lifetimes based on autopsy data in a shock model. Scand. J. Statist. 25, 271292.
[7] Gåsemyr, J. and Natvig, B. (2001). Bayesian inference based on partial monitoring of components with applications to preventive system maintenance. Naval Res. Logistics 48, 551577.
[8] Hu, T., Li, X., Xu, M. and Zhuang, W. (2007). Some new results on ordering conditional distributions of generalized order statistics. Statistics 21, 401417.
[9] Jasinski, K., Navarro, J. and Rychlik, T. (2009). Bounds on variances of lifetimes of coherent and mixed systems. J. Appl. Prob. 46, 894908.
[10] Khaledi, B. E. and Shaked, M. (2007). Ordering conditional lifetimes of coherent systems. J. Statist. Planning Infer. 137, 11731184.
[11] Kochar, S. C., Mukerjee, H. and Samaniego, F. J. (1999). The ‘signature’ of a coherent system and its application to comparisons among systems. Naval Res. Logistics 46, 507523.
[12] Li, X. and Zhang, Z. (2008). Some stochastic comparisons of conditional coherent systems. Appl. Stoch. Models Business Industry 24, 541549.
[13] Li, X. and Zhao, P. (2008). Stochastic comparison on general inactivity time and general residual life of k-out-of-n systems. Commun. Statist. Simul. Comput. 37, 10051019.
[14] Meilijson, I. (1981). Estimation of the lifetime distribution of the parts from the autopsy statistics of the machine. J. Appl. Prob. 18, 829838.
[15] Navarro, J. and Balakrishnan, N. (2010). Study of some measures of dependence between order statistics and systems. J. Multivariate Anal. 101, 5267.
[16] Navarro, J. and Rychlik, T. (2007). Reliability and expectation bounds for coherent systems with exchangeable components. J. Multivariate Anal. 98, 102113.
[17] Navarro, J., Balakrishnan, N. and Samaniego, F. J. (2008). Mixture representations of residual lifetimes of used systems. J. Appl. Prob. 45, 10971112.
[18] Navarro, J., Ruiz, J. M. and Sandoval, C. J. (2005). A note on comparisons among coherent systems with dependent components using signatures. Statist. Prob. Lett. 72, 179185.
[19] Navarro, J., Ruiz, J. M. and Sandoval, C. J. (2007). Properties of coherent systems with dependent components. Commun. Statist. Theory Meth. 36, 175191.
[20] Navarro, J., Samaniego, F. J., Balakrishnan, N. and Bhattacharya, D. (2008). On the application and extension of system signatures in engineering reliability. Naval Res. Logistics 55, 313327.
[21] Poursaeed, M. H. (2010). A note on the mean past and the mean residual life of a (n-k+1)-out-of-n system under multi monitoring. Statist. Papers 51, 409419.
[22] Poursaeed, M. H. and Nematollahi, A. R. (2008). On the mean past and the mean residual life under double monitoring. Commun. Statist. Theory Meth. 37, 11191133.
[23] Samaniego, F. J. (1985). On closure of the IFR class under formation of coherent systems. IEEE Trans. Reliab. 34, 6972.
[24] Samaniego, F. J., Balakrishnan, N. and Navarro, J. (2009). Dynamic signatures and their use in comparing the reliability of new and used systems. Naval Res. Logistics 56, 577591.
[25] Shaked, M. and Shanthikumar, J. G.} (2007). Stochastic Orders. Springer, New York.
[26] Tavangar, M. and Asadi, M. (2010). A study on the mean past lifetime of the components of (n-k+1)-out-of-n system at the system level. Metrika 72, 5973.
[27] Wang, Y., Zhuang, W. and Hu, T. (2010). Conditionally stochastic domination of generalized order statistics from two samples. Statist. Papers 51, 369373.
[28] Zhang, Z. (2010). Ordering conditional general coherent systems with exchangeable components. J. Statist. Planning Infer. 140, 454460.

Keywords

MSC classification

Related content

Powered by UNSILO

Mixture Representations of Inactivity Times of Conditional Coherent Systems and their Applications

  • Zhengcheng Zhang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.