Skip to main content Accessibility help
×
Home

Measures of ageing tendency

  • Magdalena Szymkowiak (a1)

Abstract

A family of generalized ageing intensity functions of univariate absolutely continuous lifetime random variables is introduced and studied. They allow the analysis and measurement of the ageing tendency from various points of view. Some of these generalized ageing intensities characterize families of distributions dependent on a single parameter, while others determine distributions uniquely. In particular, it is shown that the elasticity functions of various transformations of distributions that appear in lifetime analysis and reliability theory uniquely characterize the parent distribution. Moreover, the recognition of the shape of a properly chosen generalized ageing intensity estimate admits a simple identification of the data lifetime distribution.

Copyright

Corresponding author

*Postal address: Institute of Automation and Robotics, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland.

References

Hide All
[1]Barlow, R.E. and Van Zwet, W. R. (1969a). Asymptotic properties of isotonic estimators for the generalized failure rate function. Part I. Strong consistency. In Nonparametric Techniques in Statistical Inference (Proc. Symp. Indiana University, Bloomington, IN, 1969). Cambridge University Press, pp. 159176.
[2]Barlow, R.E. and Van Zwet, W. R. (1969b). Asymptotic properties of isotonic estimators for the generalized failure rate function. Part II. Asymptotic distributions. Operations Research Center Report ORC, University of California, Berkeley, pp. 69110.
[3]Barlow, R.E. and Van Zwet, W. R. (1971). Comparison of several nonparametric estimators of the failure rate function. Operations Research Center Report ORC, Gordon Breach, New York, pp. 375399.
[4]Bhattacharjee, S., Nanda, A. K. and Misra, S. Kr. (2013). Reliability analysis using ageing intensity function. Stat. Prob. Lett. 83, 13641371.
[5]Bowman, A.W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. Oxford University Press.
[6]Case, K.E. and Fair, R. C. (2007). Principles of Economics, 8th edn. Prentice-Hall, Englewood Cliffs, NJ.
[7]Chang, M. N. (1996). On the asymptotic distribution of an isotonic window estimator for the generalized failure rate function. Commun. Statist. Theory Meth. 25, 22392249.
[8]Cheng, K. F. (1982). Contributions to nonparametric generalized failure rate function estimation. Metrika 29, 215225.
[9]Chiang, A. C. and Wainwright, K. (2005). Fundamental Methods of Mathematical Economics, 4th edn. McGraw-Hill, New York.
[10]Denneberg, D. (1990). Premium calculation: Why standard deviation should be replaced by absolute deviation. ASTIN Bull. 20, 181190.
[11]Deshpande, J. V., Kochar, S.C. and Singh, H. (1986). Aspects of positive ageing. J. Appl. Prob. 23, 748758.
[12]Jiang, R., Ji, P. and Xiao, X. (2003). Aging property of unimodal failure rate models. Reliab. Eng. Syst. Safety 79, 113116.
[13]Johnson, N. L, Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions. John Wiley, New York.
[14]Lai, C.D., Xie, M. and Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Trans. Reliab. 52, 3337.
[15]Lee, E. and Wang, J. (2003). Statistical Methods for Survival Data Analysis, 3rd edn. John Wiley, New York.
[16]Marshall, A. (1890). Principles of Economics. Macmillan, London.
[17]Marshall, A. W. and Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric and Parametric Models. Springer Series in Statistics. Springer, New York.
[18]Navarro, J., Del Aguila, Y., Sordo, M.A. and Suárez-Llorens, A. (2013). Stochastic ordering properties for systems with dependent identically distributed components. Appl. Stoch. Models Business Industry 29, 264278.
[19]Navarro, J., Del Aguila, Y., Sordo, M.A. and Suárez-Llorens, A. (2014). Preservation of reliability classes under the formation of coherent systems. Appl. Stoch. Models Business Industry 30, 444454.
[20]Phani, K. K. (1987). A new modified Weibull distribution function. Commun. Amer. Ceramic Soc. 70, 182184.
[21]Pickands, J. (1975). Statistical inference using extreme order statistics. Ann. Statist. 3, 119131.
[22]Rady, E. A., Hassanein, W. A. and Elhaddad, T. A. (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus 5, 1838.
[23]Shaked, M. (1979). An estimator for the generalized hazard rate function. Commun. Statist. Theory Meth. A8, 1733.
[24]Sordo, M. A., Suárez-Llorens, A. and Bello, A. (2015). Comparison of conditional distributions in portfolios of dependent risks. Insurance Math. Econom. 61, 6269.
[25]Sydsæter, K. and Hammond, P. (2012). Essential Mathematics for Economic Analysis. Pearson Education, London.
[26]Szymkowiak, M. (2018a). Characterizations of distributions through aging intensity. IEEE Trans. Reliab. 67, 446458.
[27]Szymkowiak, M. (2018b). Generalized aging intensity functions. Reliab. Eng. Syst. Safety 178, 198208.
[28]Veres-Ferrer, E. J. and Pavía, J. M. (2014). On the relationship between the reversed hazard rate and elasticity. Statist. Papers 55, 275284.
[29]Veres-Ferrer, E. J. and Pavía, J. M. (2017). Properties of the elasticity of a continuous random variable. A special look to its behaviour and speed of change. Commun. Statist. Theory Meth. 46, 30543069.
[30]Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293296.

Keywords

MSC classification

Measures of ageing tendency

  • Magdalena Szymkowiak (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed