Skip to main content Accessibility help

Limit theorems for the fractional nonhomogeneous Poisson process

  • Nikolai Leonenko (a1), Enrico Scalas (a2) and Mailan Trinh (a2)


The fractional nonhomogeneous Poisson process was introduced by a time change of the nonhomogeneous Poisson process with the inverse α-stable subordinator. We propose a similar definition for the (nonhomogeneous) fractional compound Poisson process. We give both finite-dimensional and functional limit theorems for the fractional nonhomogeneous Poisson process and the fractional compound Poisson process. The results are derived by using martingale methods, regular variation properties and Anscombe’s theorem. Eventually, some of the limit results are verified in a Monte Carlo simulation.


Corresponding author

*Postal address: School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK.
**Postal address: Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, UK.


Hide All
[1]Aletti, G., Leonenko, N. and Merzbach, E. (2018). Fractional Poisson fields and martingales. J. Statist. Phys. 170, 700730.
[2]Anscombe, F. J. (1952). Large-sample theory of sequential estimation. Proc. Camb. Phil. Soc. 48, 600607.
[3]Becker-Kern, P., Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorems for coupled continuous time random walks. Ann. Prob. 32, 730756.
[4]Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions. Electron. J. Prob. 14, 17901827.
[5]Beghin, L. and Orsingher, E. (2010). Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Prob. 15, 684709.
[6]Biard, R. and Saussereau, B. (2014). Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Prob. 51, 727740.
[7]Biard, R. and Saussereau, B. (2016). Correction: “Fractional Poisson process: long-range dependence and applications in ruin theory”. J. Appl. Prob. 53, 12711272.
[8]Bielecki, T. R. and Rutkowski, M. (2002). Credit risk: modelling, valuation and hedging. Springer Finance. Springer, Berlin.
[9]Bingham, N. H. (1971). Limit theorems for occupation times of Markov processes. Z. Wahrscheinlichkeitsth. 14, 122.
[10]Brémaud, P. (1981). Point Processes and Queues. Springer, New York.
[11]Cahoy, D. O., Polito, F. and Phoha, V. (2015). Transient behavior of fractional queues and related processes. Methodol. Comput. Appl. Prob. 17, 739759.
[12]Cahoy, D. O., Uchaikin, V. V. and Woyczynski, W. A. (2010). Parameter estimation for fractional Poisson processes. J. Statist. Plann. Infer. 140, 31063120.
[13]Cohen, A. M. (2007). Numerical Methods for Laplace Transform Inversion (Numerical Methods Alg. 5). Springer, New York.
[14]Cont, R. and Tankov, P. (2004). Financial modelling with jump processes. Chapman & Hall/CRC, Boca Raton, FL.
[15]Cox, D. R. (1955). Some statistical methods connected with series of events. J. R. Statist. Soc. Ser. B. 17, 129157; discussion, 157164.
[16]Csörgő, M. and Fischler, R. (1973). Some examples and results in the theory of mixing and random-sum central limit theorems. Collection of articles dedicated to the memory of Alfréd 402 Rényi, II. Period. Math. Hungar. 3, 4157.
[17]Daley, D. J. and Vere-jones, D. (2003). An Introduction to the Theory of Point Processes, Vol. I, 2nd edn. Springer, New York.
[18]Di Crescenzo, A., Martinucci, B. and Meoli, A. (2016). A fractional counting process and its connection with the Poisson process. ALEA Lat. Am. J. Prob. Math. Statist. 13, 291307.
[19]Ehrenberg, A. S. (1988). Repeat-buying: Facts, Theory and Data. Oxford University Press, New York.
[20]Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Math. Methods Oper. Res. 77, 423432.
[21]Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edn. John Wiley, New York.
[22]Fulger, D., Scalas, E. and Germano, G. (2008). Monte carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Physical Review E 77, 021122.
[23]Gergely, T. and Yezhow, I. I. (1973). On a construction of ordinary Poisson processes and their modelling. Z. Wahrscheinlichkeitsth. 27, 215232.
[24]Gergely, T. and Yezhow, I. I. (1975). Asymptotic behaviour of stochastic processes modelling an ordinary Poisson process. Period. Math. Hungar. 6, 203211.
[25]Germano, G., Politi, M., Scalas, E. and Schilling, R. L. (2009). Stochastic calculus for uncoupled continuous-time random walks. Phys. Rev. E 79, 066102.
[26]Gnedenko, B. V. and Kovalenko, I. N. (1968). Introduction to Queueing Theory. Translated from Russian by Kondor, R.. Daniel Davey, Hartford, Conn.
[27]Grandell, J. (1976). Doubly Stochastic Poisson Processes (Lecture Notes Math. 529). Springer, Berlin.
[28]Grandell, J. (1991). Aspects of Risk Theory. Springer, New York.
[29]Gut, A. (1974). On the moments and limit distributions of some first passage times. Ann. Prob. 2, 277308.
[30]Gut, A. (2013). Probability: A Graduate Course, 2nd edn. Springer, New York.
[31]Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes (Fundamental Principles Math. Sci. 288), 2nd edn. Springer, Berlin.
[32]Khintchine, A. Y. (1969). Mathematical Methods in the Theory of Queueing (Griffin’s Statist. Monogr. Courses 7), 2nd edn. Hafner Publishing, New York.
[33]Kingman, J. (1964). On the doubly stochastic Poisson processes. Proc. Camb. Phil. Soc. 60, 923930.
[34]Kozubowski, T. J. and Rachev, S. T. (1999). Univariate geometric stable laws. J. Comput. Anal. Appl. 1, 177217.
[35]Laskin, N. (2003). Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201213.
[36]Leonenko, N. and Merzbach, E. (2015). Fractional Poisson fields. Methodol. Comput. Appl. Prob. 17, 155168.
[37]Leonenko, N., Scalas, E. and Trinh, M. (2017). The fractional non-homogeneous Poisson process. Statist. Prob. Lett. 120, 147156.
[38]Maheshwari, A. and Vellaisamy, P. (2016). On the long-range dependence of fractional Poisson and negative binomial processes. J. Appl. Prob. 53, 9891000.
[39]Mainardi, F., Gorenflo, R. and Scalas, E. (2004). A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 5364.
[40]Meerschaert, M. M., Nane, E. and Vellaisamy, P. (2011). The fractional Poisson process and the inverse stable subordinator. Electron. J. Prob. 16, 16001620.
[41]Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Prob. 41, 623638.
[42]Meerschaert, M. M. and Sikorskii, A. (2012). Stochastic Models for Fractional Calculus (De Gruyter Stud. Math. 43). Walter de Gruyter, Berlin.
[43]Meerschaert, M. M. and Straka, P. (2013). Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 116.
[44]Politi, M., Kaizoji, T. and Scalas, E. (2011). Full characterisation of the fractional poisson process. Europhysics Letters 96.
[45]Post, E. L. (1930). Generalized differentiation. Trans. Amer. Math. Soc. 32, 723781.
[46]Richter, W. (1965). Übertragung von Grenzaussagen für Folgen von zufälligen Grössen auf Folgen mit zufälligen Indizes. Teor. Veroyat. Primen. 10, 8294. English translation: Theoret. Prob. Appl. 10, 74–84.
[47]Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall, New York.
[48]Serfozo, R. F. (1972a). Conditional Poisson processes. J. Appl. Prob. 9, 288302.
[49]Serfozo, R. F. (1972b). Processes with conditional stationary independent increments. J. Appl. Prob. 9, 303315.
[50]Watanabe, S. (1964). On discontinuous additive functionals and Lévy measures of a Markov process. Japan. J. Math. 34, 5370.
[51]Whitt, W. (2002). Stochastic-Process Limits. Springer, New York.
[52]Widder, D. V. (1941). The Laplace Transform (Princeton Math. Ser. 6). Princeton University Press.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed