Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kl86h Total loading time: 13.208 Render date: 2021-04-13T11:19:24.093Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Large Cliques in a Power-Law Random Graph

Published online by Cambridge University Press:  14 July 2016

Svante Janson
Affiliation:
Uppsala University
Tomasz Łuczak
Affiliation:
Adam Mickiewicz University
Ilkka Norros
Affiliation:
VTT Technical Research Centre of Finland
Rights & Permissions[Opens in a new window]

Abstract

In this paper we study the size of the largest clique ω(G(n, α)) in a random graph G(n, α) on n vertices which has power-law degree distribution with exponent α. We show that, for ‘flat’ degree sequences with α > 2, with high probability, the largest clique in G(n, α) is of a constant size, while, for the heavy tail distribution, when 0 < α < 2, ω(G(n, α)) grows as a power of n. Moreover, we show that a natural simple algorithm with high probability finds in G(n, α) a large clique of size (1 − o(1))ω(G(n, α)) in polynomial time.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2010 

References

[1] Bianconi, G. and Marsili, M. (2006). Emergence of large cliques in random scale-free networks. Europhys. Lett. 74}, 740746.CrossRefGoogle Scholar
[2] Bianconi, G. and Marsili, M. (2006). Number of cliques in random scale-free network ensembles. Physica D 224}, 16.CrossRefGoogle Scholar
[3] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.Google Scholar
[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation}. Cambridge University Press.CrossRefGoogle Scholar
[5] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31}, 3122.CrossRefGoogle Scholar
[6] Britton, T., Deijfen, M. and Martin-Löf, A. (2006). Generating simple random graphs with prescribed degree distribution. J. Statist. Phys.} 124, 13771397.CrossRefGoogle Scholar
[7] Chung, F. and Lu, L. (2002). Connected components in random graphs with given expected degree sequences. Ann. Combinatorics 6, 125145.CrossRefGoogle Scholar
[8] Durrett, R. (2007). Random Graphs Dynamics}. Cambridge University Press.Google Scholar
[9] Feller, W. (1971). An Introduction to Probability Theory and Its Applications}, Vol. II, 2nd edn. John Wiley, New York.Google Scholar
[10] Frieze, A. and McDiarmid, C. (1997). Algorithmic theory of random graphs. Random Structures Algorithms 10}, 542.3.0.CO;2-Z>CrossRefGoogle Scholar
[11] Janson, S. (2008). Asymptotic equivalence and contiguity of some random graphs. Preprint. Available at http://arxiv.org/abs/0802.1637v1.Google Scholar
[12] Janson, S., Łuczak, T. and Ruciński, A. (2000). Random Graphs}. Wiley-Interscience, New York.CrossRefGoogle Scholar
[13] Norros, I. (2009). A mean-field approach to some Internet-like random networks. In Proc. 21st Internat. Teletraffic Congress (Paris, September 2009), North-Holland, Amsterdam, pp. 18.Google Scholar
[14] Norros, I. and Reittu, H. (2006). On a conditionally Poissonian graph process. Adv. Appl. Prob. 38}, 5975.CrossRefGoogle Scholar
[15] Riordan, O. (2005). The small giant component in scale-free random graphs. Combinatorics Prob. Comput. 14}, 897938.CrossRefGoogle Scholar
[16] Van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2006). Distances in random graphs with infinite mean degrees. Extremes 8, 111141.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 162 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Large Cliques in a Power-Law Random Graph
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Large Cliques in a Power-Law Random Graph
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Large Cliques in a Power-Law Random Graph
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *