Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T14:28:08.477Z Has data issue: false hasContentIssue false

Exponential models by Orlicz spaces and applications

Published online by Cambridge University Press:  16 November 2018

Marina Santacroce*
Affiliation:
Politecnico di Torino
Paola Siri*
Affiliation:
Politecnico di Torino
Barbara Trivellato*
Affiliation:
Politecnico di Torino
*
* Postal address: Dipartimento di Scienze Matematiche G. L. Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
* Postal address: Dipartimento di Scienze Matematiche G. L. Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
* Postal address: Dipartimento di Scienze Matematiche G. L. Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract

The geometric structure of the nonparametric statistical model of all positive densities connected by an open exponential arc and its intimate relation to Orlicz spaces give new insights to well-known financial objects which arise in exponential utility maximization problems.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., Marsden, J. E. and Ratiu, T. (1988). Manifold, Tensor Analysis and Applications, 2nd edn. Springer, New York.Google Scholar
Biagini, S. and Frittelli, M. (2008). A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Prob. 18, 929966.Google Scholar
Brigo, D. and Pistone, G. (2017). Dimensionality Reduction for Measure Valued Evolution Equations in Statistical Manifolds. In Computational Information Geometry. Signals and Communication Technology, Springer, Cham, pp. 217265.Google Scholar
Cena, A. and Pistone, G. (2007). Exponential statistical manifold. Ann. Inst. Statist. Math. 59, 2756.Google Scholar
Cheridito, P. and Li, T. (2009). Risk measures on Orlicz hearts. Math. Finance 19, 189214.Google Scholar
Delbaen, F. et al. (2002). Exponential hedging and entropic penalties. Math. Finance 12, 99123.Google Scholar
Doléans-Dade, C. and Meyer, P.-A. (1979). Inégalités de normes avec poids. In Séminaire de Probabilités XIII (Lecture Notes Math. 721), Springer, Berlin, pp. 313331.Google Scholar
Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 3952.Google Scholar
Grandits, P. and Rheinländer, T. (2002). On the minimal entropy martingale measure. Ann. Prob. 30, 10031038.Google Scholar
Imparato, D. and Trivellato, B. (2009). Geometry of extendend exponential models. In Algebraic and Geometric Methods in Statistics, Cambridge University Press, pp. 307326.Google Scholar
Kazamaki, N. (1994). Continuous Exponential Martingales and BMO (Lecture Notes Math. 1579). Springer, Berlin.Google Scholar
Lods, B. and Pistone, G. (2015). Information geometry formalism for the spatially homogeneous Boltzmann equation. Entropy 17, 43234363.Google Scholar
Mania, M., Santacroce, M. and Tevzadze, R. (2003). A semimartingale BSDE related to the minimal entropy martingale measure. Finance Stoch. 7, 385402.Google Scholar
Mania, M., Santacroce, M. and Tevzadze, R. (2004). The Bellman equation related to the minimal entropy martingale measure. Georgian Math. J. 11, 125135.Google Scholar
Pistone, G. (2013). Examples of the application of nonparametric information geometry to statistical physics. Entropy 15, 40424065.Google Scholar
Pistone, G. and Rogantin, M. P. (1999). The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5, 721760.Google Scholar
Pistone, G. and Sempi, C. (1995). An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23, 15431561.Google Scholar
Rao, M. M. and Ren, Z. D. (1991). Theory of Orlicz Spaces. Marcel Dekker, New York.Google Scholar
Rao, M. M. and Ren, Z. D. (2002). Applications of Orlicz Spaces. Marcel Dekker, New York.Google Scholar
Santacroce, M., Siri, P. and Trivellato, B. (2016). New results on mixture and exponential models by Orlicz spaces. Bernoulli 22, 14311447.Google Scholar
Santacroce, M., Siri, P. and Trivellato, B. (2017). On Mixture and Exponential Connection by Open Arcs. In Geometric Science of Information, GSI 2017 (Lecture Notes Comp. Sci. 10589), Springer, Cham.pp. 577584.Google Scholar
Santacroce, M., Siri, P. and Trivellato, B. (2018). An Application of Maximal Exponential Models to Duality Theory. Entropy 2, 495.Google Scholar