Skip to main content Accessibility help

Conditional law of a branching process observing a subpopulation

  • Claudia Ceci (a1) and Anna Gerardi (a2)


The paper is concerned with filtering the cardinality of a branching process observing the cardinality of a subpopulation. In this model, both the processes, state and observation are pure jump processes and may have common jump times. Preliminary properties are studied in the tree framework. A recursive structure for the filtering equation is proved in the supercritical case.


Corresponding author

Postal address: Dipartimento di Scienze, Facoltà di Economia, Università di Chieti, 65127 Pescara, Italy.
∗∗ Postal address: Dipartimento di Ingegneria Elettrica, Facoltà di Ingegneria, Università dell’Aquila, L’Aquila, Italy. Email address:


Hide All
[1]. Athreya, K. B., and Ney, P. E. (1972). Branching Processes. Springer, Berlin.
[2]. Brémaud, P. (1980). Point Processes and Queues. Springer, Berlin.
[3]. Calzolari, A., and Nappo, G. (2000). Il filtro di un modello con dati raggruppati e osservazioni di conteggio. Preliminary version of (2001) The filtering problem in a model with grouped data and counting observation times. Preprint, Dipartimento di Matematica, Università di Roma ‘La Sapienza’.
[4]. Ceci, C., and Gerardi, A. (1997). Filtering of a branching process given its split times. J. Appl. Prob. 55, 2750.
[5]. Ceci, C., and Gerardi, A. (1999). Optimal control and filtering of the reproduction law of a branching process. Acta Appl. Math. 34, 565574.
[6]. Ceci, C., and Gerardi, A. (2000). Filtering of a Markov jump process with counting observation. Appl. Math. Optimization 42, 118.
[7]. Ceci, C., and Gerardi, A. (2001). Nonlinear filtering equation of a jump process with counting observations. Acta Appl. Math. 66, 139154.
[8]. Ceci, C., and Mazliak, L. (1992). Une propriété forte de branchements. C. R. Acad. Sci. Paris Math. 315, 851853.
[9]. Ceci, C., and Mazliak, L. (1994). Controlled trees. Rebrape 8, 93105.
[10]. Ceci, C., Gerardi, A., and Mazliak, L. (1996). Some results about stopping times on the marked tree space. Theory Prob. Appl. 41, 578590.
[11]. Chauvin, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 19, 11951205.
[12]. Elliott, R. J. (1982). Stochastic Calculus and Applications. Springer, Berlin.
[13]. Fan, K. (1996). On a new approach to the solution of the nonlinear filtering equation for jump processes. Prob. Eng. Inf. Sci. 10, 153163.
[14]. Jacod, J., (1975). Multivariate point processes: predictable projection. Z. Wahrscheinlichkeitsth. 31, 235253.
[15]. Kliemann, W., Koch, G., and Marchetti, F. (1990). On the unnormalized solution of the filtering problem with counting process observations. IEEE Trans. Inf. Theory 36, 14151425.
[16]. Kurtz, T. G., and Ocone, D. (1988). Unique characterization of conditional distribution in nonlinear filtering. Ann. Prob. 16, 80107.
[17]. Neveu, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Prob. Statist. 22, 199207.


MSC classification

Conditional law of a branching process observing a subpopulation

  • Claudia Ceci (a1) and Anna Gerardi (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed