Andrews, G. E., Askey, R. and Roy, R. (1999).
*Special Functions.*
Cambridge University Press.

Askey, R. and Wilson, J. (1979). A set of polynomials that generalize the Racah coefficients on 6 - *j* symbols.
*SIAM J. Math. Anal.*
10, 1008–1016.

Chebyshev, P. L. (1875). Sur l'interpolation des valeurs équidistants. In
*Œuvres de P. L. Tchebychef*
, Tome II, eds Markoff, A. and Sonin, N., Chelsea, New York, 219–242. .

Donnelly, P., Lloyd, P. and Sudbury, A. (1994). Approach to stationarity of the Bernoulli-Laplace diffusion model.
*Adv. Appl. Probab.*
26, 715–727.

Dunkl, C. F. and Ramirez, D. E. (1974). Krawtchouk polynomials and the symmetrization of hypergroups.
*SIAM J. Math. Anal.*
5, 351–366.

Eagleson, G. K. (1969). A characterization theorem for positive definite sequences on the Krawtchouk polynomials.
*Austral. J. Statist*
, ll, 29–38.

Hahn, W. (1949). Uber Orthogonalpolynome, die *q*-differenzengleichungen genügen.
*Math. Nachr.*
2, 4–34.

Heathcote, C. R., Seneta, E. and Vere-Jones, D. (1967). A refinement of two theorems in the theory of branching processes.
*Teor. Veroyatnost. i Primenen.*
12, 297–301.

Hoare, M. R. and Rahman, M. (1983). Cumulative Bernoulli trials and Krawtchouk processes.
*Stoch. Proc. Applic.*
16, 113–139.

Karlin, S. and Mcgregor, J. L. (1961). The Hahn polynomials, formulas and an application.
*Scripta Math.*
26, 33–46.

Karlin, S. and Mcgregor, J. L. (1962). On a genetics model of Moran.
*Proc. Cambridge Philos. Soc.*
58, 299–231.

Karlin, S. and Mcgregor, J. L. (1965). Ehrenfest urn models.
*J. Appl. Probab.*
2, 352–376.

Kemeny, J. G. and Snell, L. J. (1960).
*Finite Markov Chains.*
Van Nostrand, Princeton, NJ.

Kendall, M. G. and Stuart, A. (1963).
*The Advanced Theory of Statistics*, Vol. 1, *Distribution Theory.*
Griffin, London.

Moran, P. A. P. (1960).
*The Statistical Processes of Evolutionary Theory.*
Oxford University Press.

Seneta, E. (1997). M. Krawtchouk (1892-1942), Professor of Mathematical Statistics.
*Theory Stoch. Proc.*
3, 388–392.

Seneta, E. (1998). Characterization of Markov chains by orthogonal polynomial systems. In
*Conference Materials*, *7th Internat. Sci. Kravchuk Conf., 14-16 May 1998*, *Kyiv*
, , 454–457.

Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states.
*J. Appl. Probab.*
3, 403–434.

Sneddon, I. N. (1961).
*Special Functions of Mathematical Physics and Chemistry.*
Oliver and Boyd, Edinburgh.

Vere-Jones, D. (1962). Geometric ergodicity in denumerable Markov chains.
*Quart. J. Math. Oxford*
*(2)*
13, 7–28.

Vere-Jones, D. (1967a). Ergodic properties of non-negative matrices, I. Pacific
*J. Math.*
22, 361–386.

Vere-Jones, D. (1967b). The infinite divisibility of a bivariate gamma distribution.
*Sankhya A*
29, 421–422.

Vere-Jones, D. (1968). Ergodic properties of non-negative matrices, II.
*Pacific J. Math.*
, 26, 601–620.

Vere-Jones, D. (1971). Finite bivariate distributions and semigroups of non-negative matrices.
*Quart. J. Math. Oxford*
*(2)*
, 22, 247–270.