Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T18:04:30.668Z Has data issue: false hasContentIssue false

An elementary approach to the inverse first-passage-time problem for soft-killed Brownian motion

Published online by Cambridge University Press:  04 July 2023

Alexander Klump*
Affiliation:
Paderborn University
Martin Kolb*
Affiliation:
Paderborn University
*
*Postal address: Institute of Mathematics, Paderborn University, Germany, 33098 Paderborn, Warburger Straße 100.
*Postal address: Institute of Mathematics, Paderborn University, Germany, 33098 Paderborn, Warburger Straße 100.

Abstract

We prove existence and uniqueness for the inverse-first-passage time problem for soft-killed Brownian motion using rather elementary methods relying on basic results from probability theory only. We completely avoid the relation to a suitable partial differential equation via a suitable Feynman–Kac representation, which was previously one of the main tools.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abundo, M. (2006). Limit at zero of the first-passage time density and the inverse problem for one-dimensional diffusions. Stoch. Anal. Appl. 24, 11191145.CrossRefGoogle Scholar
Abundo, M. (2015). An overview on inverse first-passage-time problems for one-dimensional diffusion processes. Lect. Notes Seminario Interdisciplinare Mat. 12, 144.Google Scholar
Anulova, S. (1980). On Markov stopping times with a given distribution for a Wiener process. Theory Prob. Appl. 25, 362366.CrossRefGoogle Scholar
Chen, X., Chadam, J. and Saunders, D. (2022). Higher-order regularity of the free boundary in the inverse first-passage problem. SIAM J. Math. Anal. 54, 46954720.CrossRefGoogle Scholar
Chen, X., Cheng, L., Chadam, J. and Saunders, D. (2011). Existence and uniqueness of solutions to the inverse boundary crossing problem for diffusions. Ann. Appl. Prob. 21, 16631693.CrossRefGoogle Scholar
Cheng, L., Chen, X., Chadam, J. and Saunders, D. (2006). Analysis of an inverse first passage problem from risk management. SIAM J. Math. Anal. 38, 845873.CrossRefGoogle Scholar
Dudley, R. M. and Gutmann, S. (1977). Stopping times with given laws. Sém. Prob. (Strasbourg) 11, 5158.Google Scholar
Ekström, E. and Janson, S. (2016). The inverse first-passage problem and optimal stopping. Ann. Appl. Prob. 26, 31543177.CrossRefGoogle Scholar
Ettinger, B., Evans, S. N. and Hening, A. (2014). Killed Brownian motion with a prescribed lifetime distribution and models of default. Ann. Appl. Prob. 24, 133.CrossRefGoogle Scholar
Ettinger, B., Hening, A. and Wong, T. K. (2020). The inverse first passage time problem for killed Brownian motion. Ann. Appl. Prob. 30, 12511275.CrossRefGoogle Scholar
Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. Int. Statist. Rev. 70, 419435.CrossRefGoogle Scholar
Gür, S. and Pötzelberger, K. (2021). On the empirical estimator of the boundary in inverse first-exit problems. Comput. Statist. 36, 18091820.CrossRefGoogle Scholar
Iscoe, I. and Kreinin, A. (2002). Default boundary problem. Internal paper, Algorithmics Inc.Google Scholar
Jackson, K., Kreinin, A. and Zhang, W. (2009). Randomization in the first hitting time problem. Statist. Prob. Lett. 79, 24222428.CrossRefGoogle Scholar
Jaimungal, S., Kreinin, A. and Valov, A. (2009). Integral equations and the first passage time of brownian motions. Preprint, arXiv:0902.2569.Google Scholar
Jaimungal, S., Kreinin, A. and Valov, A. (2009). Randomized first passage times. Preprint, arXiv:0911.4165.Google Scholar
Jaimungal, S., Kreinin, A. and Valov, A. (2014). The generalized Shiryaev problem and Skorokhod embedding. Theory Prob. Appl. 58, 493502.CrossRefGoogle Scholar
Klump, A. (2022). The classical and the soft-killing inverse first-passage time problem: A stochastic order approach. PhD thesis, Paderborn University.Google Scholar
Klump, A. (2023). The inverse first-passage time problem as hydrodynamic limit of a particle system. Methodology Comput. Appl. Prob. 25, 42.CrossRefGoogle Scholar
Klump, A. and Kolb, M. (2023). Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary. Theory Prob. Appl. 67, 570592.CrossRefGoogle Scholar
Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser, Basel.Google Scholar
Potiron, Y. (2021). Existence in the inverse Shiryaev problem. Preprint, arXiv:2106.11573.Google Scholar
Shaked, M. and Shanthikumar, J. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Song, J.-S. and Zipkin, P. (2011). An approximation for the inverse first passage time problem. Adv. Appl. Prob. 43, 264275.CrossRefGoogle Scholar
Zucca, C. and Sacerdote, L. (2009). On the inverse first-passage-time problem for a Wiener process. Ann. Appl. Prob. 19, 13191346.CrossRefGoogle Scholar