Skip to main content Accessibility help
×
Home

Absolute regularity of semi-contractive GARCH-type processes

  • Paul Doukhan (a1) and Michael H. Neumann (a2)

Abstract

We prove existence and uniqueness of a stationary distribution and absolute regularity for nonlinear GARCH and INGARCH models of order (p, q). In contrast to previous work we impose, besides a geometric drift condition, only a semi-contractive condition which allows us to include models which would be ruled out by a fully contractive condition. This results in a subgeometric rather than the more usual geometric decay rate of the mixing coefficients. The proofs are heavily based on a coupling of two versions of the processes.

Copyright

Corresponding author

*Postal address: UMR 8088 Analyse, Géométrie et Modélisation, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France.
**Postal address: Friedrich-Schiller-Universität Jena, Institut für Mathematik, Ernst-Abbe-Platz 2, 07743 Jena, Germany. Email address: michael.neumann@uni-jena.de

References

Hide All
[1]Adell, J. A. and Jodrá, P. (2006). Exact Kolmogorov and total variation distances between some familiar discrete distributions. J. Inequal. Appl. 2006, 64307, 8pp.
[2]Baraud, Y., Comte, F. and Viennet, G. (2001). Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Statist. 29 (3), 839875.
[3]Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307327.
[4]Boussama, F. (1998). Ergodicité, mélangeances et estimation des modèles GARCH. Doctoral Thesis, University Paris 7.
[5]Bradley, R. C. (2007). Introduction to Strong Mixing Conditions, Vol. I. Kendrick Press, Heber City.
[6]Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 1739.
[7]Csorgö, M. and Horvath, L. (1997). Limit Theorems in Change-Point Analysis. Wiley, Chichester.
[8]Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications (Lecture Notes Statist. 190). Springer, New York.
[9]Den Hollander, F. (2012). Probability theory: the coupling method. Lecture Notes, University of Leiden.
[10]Douc, R., Doukhan, P. and Moulines, E. (2013). Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stoch. Process. Appl. 123, 26202647.
[11]Doukhan, P. (1994). Mixing: Properties and Examples (Lecture Notes Statist. 84). Springer, Berlin.
[12]Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. l’IHP Probabilités et Statistiques 30 (2), 6282.
[13]Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincaré Prob. Statist. 31, 393427.
[14]Durrett, R. (1991). Probability: Theory and Examples. Wadsworth, Pacific Grove.
[15]Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9871007.
[16]Fokianos, K. (2012). Count time series models. In Time Series: Methods and Applications (Handbook Statist. 30), eds Subba Rao, T., Subba Rao, S. and Rao, C. R., Elsevier, Amsterdam, pp. 315347.
[17]Fokianos, K. and Tjøstheim, D. (2011). Log-linear Poisson autoregression. J. Multivariate Anal. 102, 563578.
[18]fokianos, K., Rahbek, A. and Tjøstheim, D. (2009). Poisson autoregression. J. Amer. Statist. Soc. 104, 14301439.
[19]Francq, C. and Zakoïan, J.-M. (2006). Mixing properties of a general class of GARCH(1,1) models without moment assumptions on the observed process. Econometric Theory 22, 815834.
[20]Francq, C. and Zakoïan, J.-M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications. John Wiley, Chichester.
[21]Franke, J. (2010). Weak dependence of functional INGARCH processes. Unpublished manuscript.
[22]Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48, 17791801.
[23]Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 114.
[24]Leucht, A. and Neumann, M. H. (2013). Degenerate U- and V-statistics under ergodicity: asymptotics, bootstrap and applications in statistics. Ann. Inst. Statist. Math. 65, 349386.
[25]Leucht, A., Kreiss, J.-P. and Neumann, M. H. (2015). A model specification test for GARCH(1,1) processes. Scand. J. Stat. 42, 11671193.
[26]Lindner, A. M. (2009). Stationarity, mixing, distributional properties and moments of GARCH( p,q)-processes. In Handbook of Financial Time Series, eds Mikosch, T. et al., Springer, Berlin, pp. 4369.
[27]Neumann, M. H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17, 12681284.
[28]Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chain with applications to renewal theory. Z. Wahrscheinlichkeitsth. 12, 187202.
[29]Truquet, L. (2019). Local stationarity and time-inhomogeneous Markov chains. To appear in Ann. Statist..
[30]Tweedie, R. L. (1988). Invariant measures for Markov chains with no irreducibility assumptions. J. Appl. Prob. 25, 275285.
[31]Viennet, G. (1997). Inequalities for absolutely regular sequences: application to density estimation. Prob. Theory Relat. Fields 107, 467492.
[32]Woodard, D. B., Matteson, D. S. and Henderson, S. G. (2011). Stationarity of generalized autoregressive moving average models. Electron. J. Statist. 5, 800828.

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed