Skip to main content Accessibility help

Absolute regularity of semi-contractive GARCH-type processes

  • Paul Doukhan (a1) and Michael H. Neumann (a2)


We prove existence and uniqueness of a stationary distribution and absolute regularity for nonlinear GARCH and INGARCH models of order (p, q). In contrast to previous work we impose, besides a geometric drift condition, only a semi-contractive condition which allows us to include models which would be ruled out by a fully contractive condition. This results in a subgeometric rather than the more usual geometric decay rate of the mixing coefficients. The proofs are heavily based on a coupling of two versions of the processes.


Corresponding author

*Postal address: UMR 8088 Analyse, Géométrie et Modélisation, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France.
**Postal address: Friedrich-Schiller-Universität Jena, Institut für Mathematik, Ernst-Abbe-Platz 2, 07743 Jena, Germany. Email address:


Hide All
[1]Adell, J. A. and Jodrá, P. (2006). Exact Kolmogorov and total variation distances between some familiar discrete distributions. J. Inequal. Appl. 2006, 64307, 8pp.
[2]Baraud, Y., Comte, F. and Viennet, G. (2001). Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Statist. 29 (3), 839875.
[3]Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307327.
[4]Boussama, F. (1998). Ergodicité, mélangeances et estimation des modèles GARCH. Doctoral Thesis, University Paris 7.
[5]Bradley, R. C. (2007). Introduction to Strong Mixing Conditions, Vol. I. Kendrick Press, Heber City.
[6]Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 1739.
[7]Csorgö, M. and Horvath, L. (1997). Limit Theorems in Change-Point Analysis. Wiley, Chichester.
[8]Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications (Lecture Notes Statist. 190). Springer, New York.
[9]Den Hollander, F. (2012). Probability theory: the coupling method. Lecture Notes, University of Leiden.
[10]Douc, R., Doukhan, P. and Moulines, E. (2013). Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stoch. Process. Appl. 123, 26202647.
[11]Doukhan, P. (1994). Mixing: Properties and Examples (Lecture Notes Statist. 84). Springer, Berlin.
[12]Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. l’IHP Probabilités et Statistiques 30 (2), 6282.
[13]Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincaré Prob. Statist. 31, 393427.
[14]Durrett, R. (1991). Probability: Theory and Examples. Wadsworth, Pacific Grove.
[15]Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 9871007.
[16]Fokianos, K. (2012). Count time series models. In Time Series: Methods and Applications (Handbook Statist. 30), eds Subba Rao, T., Subba Rao, S. and Rao, C. R., Elsevier, Amsterdam, pp. 315347.
[17]Fokianos, K. and Tjøstheim, D. (2011). Log-linear Poisson autoregression. J. Multivariate Anal. 102, 563578.
[18]fokianos, K., Rahbek, A. and Tjøstheim, D. (2009). Poisson autoregression. J. Amer. Statist. Soc. 104, 14301439.
[19]Francq, C. and Zakoïan, J.-M. (2006). Mixing properties of a general class of GARCH(1,1) models without moment assumptions on the observed process. Econometric Theory 22, 815834.
[20]Francq, C. and Zakoïan, J.-M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications. John Wiley, Chichester.
[21]Franke, J. (2010). Weak dependence of functional INGARCH processes. Unpublished manuscript.
[22]Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48, 17791801.
[23]Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 114.
[24]Leucht, A. and Neumann, M. H. (2013). Degenerate U- and V-statistics under ergodicity: asymptotics, bootstrap and applications in statistics. Ann. Inst. Statist. Math. 65, 349386.
[25]Leucht, A., Kreiss, J.-P. and Neumann, M. H. (2015). A model specification test for GARCH(1,1) processes. Scand. J. Stat. 42, 11671193.
[26]Lindner, A. M. (2009). Stationarity, mixing, distributional properties and moments of GARCH( p,q)-processes. In Handbook of Financial Time Series, eds Mikosch, T. et al., Springer, Berlin, pp. 4369.
[27]Neumann, M. H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17, 12681284.
[28]Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chain with applications to renewal theory. Z. Wahrscheinlichkeitsth. 12, 187202.
[29]Truquet, L. (2019). Local stationarity and time-inhomogeneous Markov chains. To appear in Ann. Statist..
[30]Tweedie, R. L. (1988). Invariant measures for Markov chains with no irreducibility assumptions. J. Appl. Prob. 25, 275285.
[31]Viennet, G. (1997). Inequalities for absolutely regular sequences: application to density estimation. Prob. Theory Relat. Fields 107, 467492.
[32]Woodard, D. B., Matteson, D. S. and Henderson, S. G. (2011). Stationarity of generalized autoregressive moving average models. Electron. J. Statist. 5, 800828.


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed