Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-5zjcf Total loading time: 0.22 Render date: 2022-08-08T04:37:41.706Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Unrooted trees for numerical taxonomy

Published online by Cambridge University Press:  14 July 2016

Annette J. Dobson*
Affiliation:
James Cook University of North Queensland

Abstract

It is common to represent taxonomic hierarchies of related objects (such as similar plant or animal species or languages of the same family) by rooted trees with labelled terminal vertices which represent the objects. The multivariate data comparing numerous characteristics of the objects is first reduced to indices of similarity (or more often of dissimilarity) between each pair of objects. These are used to classify the objects into groups which are then depicted on a tree.

This paper shows that an unrooted tree with labelled terminal vertices may provide a better representation of the relationships between the objects because the similarity indices are required to conform to fewer restrictions. Also for a given number of terminal vertices, there are fewer unrooted than rooted trees so that studies using probability distributions of trees or seeking the most suitable tree to represent the data are more practicable.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1974 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cavalli-Sforza, L. L. and Edwards, A. W. F. (1967) Phylogenetic analysis models and estimation procedures Amer. J. Hum. Genet. 19, 233257.Google ScholarPubMed
Cormack, R. M. (1971) A review of classification J. R. Statist. Soc. A 134, 321367.CrossRefGoogle Scholar
Farris, J. S. (1970) Methods for computing Wagner trees Syst. Zool. 19, 8392.CrossRefGoogle Scholar
Harary, F. and Prins, G. (1959) The number of homeomorphically irreducible trees, and other species Acta Math. 101, 141162.CrossRefGoogle Scholar
Harding, E. F. (1971) The probabilities of rooted tree-shapes generated by random bifurcaation Adv. Appl. Prob. 3, 4477.CrossRefGoogle Scholar
Hartigan, J. A. (1967) Representation of similarity matrices by trees J. Amer. Statist. Ass. 62, 11401158.CrossRefGoogle Scholar
Jardine, N. and Sibson, R. (1971) Mathematical Taxonomy. Wiley, New York.Google Scholar
Johnson, S. C. (1967) Hierarchical clustering schemes Psychometrika 32, 241254.CrossRefGoogle ScholarPubMed
44
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Unrooted trees for numerical taxonomy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Unrooted trees for numerical taxonomy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Unrooted trees for numerical taxonomy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *