Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.356 Render date: 2021-03-02T14:58:30.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials

Published online by Cambridge University Press:  09 December 2016

Tuǧrul Dayar
Affiliation:
Bilkent University
M. Can Orhan
Affiliation:
Bilkent University
Corresponding
E-mail address:

Abstract

A multiclass c-server retrial queueing system in which customers arrive according to a class-dependent Markovian arrival process (MAP) is considered. Service and retrial times follow class-dependent phase-type (PH) distributions with the further assumption that PH distributions of retrial times are acyclic. A necessary and sufficient condition for ergodicity is obtained from criteria based on drifts. The infinite state space of the model is truncated with an appropriately chosen Lyapunov function. The truncated model is described as a multidimensional Markov chain, and a Kronecker representation of its generator matrix is numerically analyzed.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Artalejo, J. R. (1999).Accessible bibliography on retrial queues.Math. Comput. Modelling 30,16.CrossRefGoogle Scholar
[2] Artalejo, J. R. (2010).Accessible bibliography on retrial queues: progress in 2000‒2009.Math. Comput. Modelling 51,10711081.CrossRefGoogle Scholar
[3] Artalejo, J. R. and Gómez-Corral, A. (2007).Modelling communication systems with phase type service and retrial times.IEEE Commun. Lett. 11,955957.CrossRefGoogle Scholar
[4] Artalejo, J. R. and Gómez-Corral, A. (2008).Retrial Queueing Systems: A Computational Approach.Springer,Berlin.CrossRefGoogle Scholar
[5] Artalejo, J. R. and Phung-Duc, T. (2012).Markovian retrial queues with two way communication.J. Ind. Manag. Optimization 8,781806.CrossRefGoogle Scholar
[6] Asmussen, S. (2003).Applied Probability and Queues(Appl. Math. (New York) 51).Springer,New York.Google Scholar
[7] Avrachenkov, K.,Morozov, E. and Steyaert, B. (2016).Sufficient stability conditions for multi-class constant retrial rate systems.Queueing Systems 82,149171.CrossRefGoogle Scholar
[8] Baumann, H.,Dayar, T.,Orhan, M. C. and Sandmann, W. (2013).On the numerical solution of Kronecker-based infinite level-dependent QBD processes.Performance Evaluation 70,663681.CrossRefGoogle Scholar
[9] Bause, F.,Buchholz, P. and Kemper, P. (1998).A toolbox for functional and quantitative analysis of DEDS. In Computer Preformance Evaluation (Lecture Notes Comput. Sci. 1469),Springer,Berlin,pp. 356359.CrossRefGoogle Scholar
[10] Breuer, L.,Dudin, A. and Klimenok, V. (2002).A retrial BMAP/PH/N system.Queueing Systems 40,433457.CrossRefGoogle Scholar
[11] Bright, L. and Taylor, P. G. (1995).Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes.Commun. Statist. Stoch. Models 11,497525.CrossRefGoogle Scholar
[13] Buchholz, P.,Kriege, J. and Felko, I. (2014).Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications.Springer,Cham.CrossRefGoogle Scholar
[14] Chakravarthy, S. R. (2013).Analysis of MAP/PH/c retrial queue with phase type retrials ‒ simulation approach. In Modern Probabilistic Methods for Analysis of Telecommunication Networks (Commun. Comput. Inf. Sci. 356),Springer Berlin,pp. 3749.CrossRefGoogle Scholar
[15] Chiola, G.,Dutheillet, C.,Franceschinis, G. and Haddad, S. (1993).Stochastic well-formed colored nets and symmetric modeling applications.IEEE Trans. Comput. 42,13431360.CrossRefGoogle Scholar
[16] Choi, B. D. and Chang, Y. (1999).MAP1, MAP2/M/c retrial queue with the retrial group of finite capacity and geometric loss.Math. Comput. Modelling 30,99113.CrossRefGoogle Scholar
[17] Choi, B. D.,Chang, Y. and Kim, B. (1999).MAP1, MAP2/M/c retrial queue with guard channels and its application to cellular networks.Top 7,231248.CrossRefGoogle Scholar
[18] Dayar, T. and Orhan, M. C. RetrialQueueSolver. Available at http://www.cs.bilkent.edu.tr/∼tugrul/software.html.Google Scholar
[19] Dayar, T. and Orhan, M. C. (2012).Kronecker-based infinite level-dependent QBD processes.J. Appl. Prob. 49,11661187.CrossRefGoogle Scholar
[20] Dayar, T.,Hermanns, H.,Spieler, D. and Wolf, V. (2011).Bounding the equilibrium distribution of Markov population models.Numer. Linear Algebra Appl. 18,931946.CrossRefGoogle Scholar
[21] Dayar, T.,Sandmann, W.,Spieler, D. and Wolf, V. (2011).Infinite level-dependent QBD processes and matrix-analytic solutions for stochastic chemical kinetics.Adv. Appl. Prob. 43,10051026.CrossRefGoogle Scholar
[22] Diamond, J. E. and Alfa, A. S. (1998).The MAP/PH/1 retrial queue.Commun. Statist. Stoch. Models 14,11511177.CrossRefGoogle Scholar
[23] Diamond, J. E. and Alfa, A. S. (1999).Approximation method for M/PH/1 retrial queues with phase type inter-retrial times.Europ. J. Operat. Res. 113,620631.CrossRefGoogle Scholar
[24] Dudin, A. and Klimenok, V. (2000).A retrial BMAP/SM/1 system with linear repeated requests.Queueing Systems Theory Appl. 34,4766.CrossRefGoogle Scholar
[25] Falin, G. I. (1988).On a multiclass batch arrival retrial queue.Adv. Appl. Prob. 20,483487.CrossRefGoogle Scholar
[26] Falin, G. I. and Templeton, J. G. C. (1997).Retrial Queues.Chapman & Hall,London.CrossRefGoogle Scholar
[27] Fayolle, G.,Malyshev, V. A. and Menshikov, M. V. (1995).Topics in the Constructive Theory of Countable Markov Chains.Cambridge University Press.CrossRefGoogle Scholar
[28] Gharbi, N.,Dutheillet, C. and Ioualalen, M. (2009).Colored stochastic Petri nets for modelling and analysis of multiclass retrial systems.Math. Comput. Modelling 49,14361448.CrossRefGoogle Scholar
[29] Gómez-Corral, A. (2006).A bibliographical guide to the analysis of retrial queues through matrix analytic techniques.Ann. Operat. Res. 141,163191.CrossRefGoogle Scholar
[30] He, Q.-M.,Li, H. and Zhao, Y. Q. (2000).Ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times.Queueing Systems Theory Appl. 35,323347.CrossRefGoogle Scholar
[31] Kim, B. (2011).Stability of a retrial queueing network with different classes of customers and restricted resource pooling.J. Ind. Manag. Optimization 7,753765.CrossRefGoogle Scholar
[32] Kim, C. S.,Mushko, V. and Dudin, A. N. (2012).Computation of the steady state distribution for multi-server retrial queues with phase type service process.Ann. Operat. Res. 201,307323.CrossRefGoogle Scholar
[33] Kim, J. and Kim, B. (2016).A survey of retrial queueing systems. To appear in Ann. Operat. Res. CrossRefGoogle Scholar
[34] Kulkarni, V. G. (1986).Expected waiting times in a multiclass batch arrival retrial queue.J. Appl. Prob. 23,144154.CrossRefGoogle Scholar
[35] Kumar, M. S.,Sohraby, K. and Kiseon, K. (2013).Delay analysis of orderly reattempts in retrial queueing system with phase type retrial time.IEEE Commun. Lett. 17,822825.CrossRefGoogle Scholar
[36] Meyer, C. (2000).Matrix Analysis and Applied Linear Algebra.SIAM,Philadelphia, PA.CrossRefGoogle Scholar
[37] Neuts, M. F. (1979).A versatile Markovian point process.J. Appl. Prob. 16,764779.CrossRefGoogle Scholar
[38] Neuts, M. F. (1981).Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach.Johns Hopkins University Press,Baltimore, MD.Google Scholar
[39] Neuts, M. F. and Rao, B. M. (1990).Numerical investigation of a multiserver retrial model.Queueing Systems 7,169189.CrossRefGoogle Scholar
[40] Phung-Duc, T. and Kawanishi, K. (2011).Multiserver retrial queues with after-call work.Numer. Algebra Control Optimization 1,639656.Google Scholar
[41] Phung-Duc, T. and Kawanishi, K. (2014).Performance analysis of call centers with abandonment, retrial and after-call work.Performance Evaluation 80,4362.CrossRefGoogle Scholar
[42] Phung-Duc, T.,Masuyama, H.,Kasahara, S. and Takahashi, Y. (2010).A simple algorithm for the rate matrices of level-dependent QBD processes. In Proceedings of the 5th International Conference on Queueing Theory and Network Applications,ACM,New York, pp. 4652.Google Scholar
[43] Ramaswami, V. and Lucantoni, D. M. (1985).Algorithms for the multiserver queue with phase-type service.Commun. Statist. Stoch. Models 1,393417.CrossRefGoogle Scholar
[44] Sakurai, H. and Phung-Duc, T. (2015).Two-way communication retrial queues with multiple types of outgoing calls.TOP 23,466492.CrossRefGoogle Scholar
[45] Shin, Y. W. (2011).Algorithmic solution for M/M/c retrial queue with PH2-retrial times.J. Appl. Math. Inform. 29,803811.Google Scholar
[46] Shin, Y. W. and Moon, D. H. (2011).Approximation of M/M/c retrial queue with PH-retrial times.Europ. J. Operat. Res. 213,205209.CrossRefGoogle Scholar
[47] Shin, Y. W. and Moon, D. H. (2014).M/M/c retrial queue with multiclass of customers.Methodol. Comput. Appl. Prob. 16,931949.CrossRefGoogle Scholar
[48] Tweedie, R. L. (1975).Sufficient conditions for regularity, recurrence and ergodicity of Markov processes.Math. Proc. Camb. Phil. Soc. 78,125136.CrossRefGoogle Scholar
[49] Uysal, E. and Dayar, T. (1998).Iterative methods based on splittings for stochastic automata networks.Europ. J. Operat. Res. 110,166186.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 52 *
View data table for this chart

* Views captured on Cambridge Core between 09th December 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Steady-state analysis of a multiclass MAP/PH/c queue with acyclic PH retrials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *