Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 0.342 Render date: 2021-04-19T19:54:55.516Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Probability models for liberation

Published online by Cambridge University Press:  14 July 2016

Pamela J. Davy
Affiliation:
The Australian National University

Abstract

An index lying between 0 and 1 is presented to describe the degree of liberation (or separation) of one component of a particulate material. It is shown how the index is related to the covariance function of the material, the distribution of shapes and sizes of the particles and to the interaction between fracture surfaces and the structure of the material. The variation of the index with the extent of crushing is investigated, together with the problem of stereological estimation. The index is evaluated for some particular probability models.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1984 

Access options

Get access to the full version of this content by using one of the access options below.

References

Davy, P. J. (to appear) Inequalities for moment ratios of secant length.Google Scholar
Davy, P. J. (1983) Liberation of points, fibres and sheets. Proc. Conf. Stochastic Geometry, Geometric Statistics, and Stereology, Oberwolfach 1983. Teubner-Verlag, Leipzig.Google Scholar
Efron, B. (1982) The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF regional conference series in applied mathematics, No. 38, Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Enns, E. G. and Ehlers, P. F. (1978) Random paths through a convex region. J. Appl. Prob. 15, 144152.CrossRefGoogle Scholar
Gilbert, E. N. (1962) Random subdivisions of space into crystals. Ann. Math. Statist. 33, 958972.CrossRefGoogle Scholar
Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, New York.Google Scholar
Miles, R. E. (1972) The random division of space. Suppl. Adv. Appl. Prob., 243266.CrossRefGoogle Scholar
Serra, J. (1982) Image Analysis and Mathematical Morphology. Academic Press, New York.Google ScholarPubMed
Stoyan, D. (1979) Proofs of some fundamental formulas of stereology for non-Poisson grain models. Math. Operationsforsch. Statist. Ser. Optimization 10, 575583.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Probability models for liberation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Probability models for liberation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Probability models for liberation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *