Skip to main content Accessibility help
×
Home

Pair correlation functions and limiting distributions of iterated cluster point processes

Published online by Cambridge University Press:  16 November 2018


Jesper Møller
Affiliation:
Aalborg University
Andreas D. Christoffersen
Affiliation:
Aalborg University
Corresponding
E-mail address:

Abstract

We consider a Markov chain of point processes such that each state is a superposition of an independent cluster process with the previous state as its centre process together with some independent noise process and a thinned version of the previous state. The model extends earlier work by Felsenstein (1975) and Shimatani (2010) describing a reproducing population. We discuss when closed-form expressions of the first- and second-order moments are available for a given state. In a special case it is known that the pair correlation function for these type of point processes converges as the Markov chain progresses, but it has not been shown whether the Markov chain has an equilibrium distribution with this, particular, pair correlation function and how it may be constructed. Assuming the same reproducing system, we construct an equilibrium distribution by a coupling argument.


Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Andersen, I. T. et al. (2018). Double Cox cluster processes - with applications to photoactivated localization microscopy. Spatial Statist. 27, 5873.CrossRefGoogle Scholar
[2]Barndorff-Nielsen, O., Kent, J. and Sørensen, M. (1982). Normal variance-mean mixtures and z distributions. Internat. Statist. Rev. 50, 145159.CrossRefGoogle Scholar
[3]Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes, Vol. I, Elementary Theory and Methods, 2nd edn. Springer, New York.Google Scholar
[4]Felsenstein, J. (1975). A pain in the torus: some difficulties with models of isolation by distance. Amer. Naturalist 109, 359368.CrossRefGoogle Scholar
[5]Kingman, J. F. C. (1977). Remarks on the spatial distribution of a reproducing population. J. Appl. Prob. 14, 577583.CrossRefGoogle Scholar
[6]Lavancier, F., Møller, J. and Rubak, E. (2015). Determinantal point process models and statistical inference. J. R. Statist. Soc. B 77, 853877.CrossRefGoogle Scholar
[7]Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. Appl. Prob. 7, 83122.CrossRefGoogle Scholar
[8]Matérn, B. (1960). Spatial Variation. Meddelanden från Statens Skogforskningsinstitut, Stockholm.Google Scholar
[9]Matérn, B. (1986). Spatial Variation (Lecture Notes Statist. 36), 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
[10]McCullagh, P. and Møller, J. (2006). The permanental process. Adv. Appl. Prob. 38, 873888.CrossRefGoogle Scholar
[11]Møller, J. (1989). Random tessellations in Rd. Adv. Appl. Prob. 21, 3773.CrossRefGoogle Scholar
[12]Møller, J. (1994). Lectures on Random Voronoi Tessellations (Lecture Notes Statist. 87). Springer, New York.CrossRefGoogle Scholar
[13]Møller, J. (2003). Shot noise Cox processes. Adv. Appl. Prob. 35, 614640.CrossRefGoogle Scholar
[14]Møller, J. and Christoffersen, A. D. (2018). Pair correlation functions and limiting distributions of iterated cluster point processes. Preprint. Available at https://arxiv.org/abs/1711.08984.Google Scholar
[15]Møller, J. and Torrisi, G. L. (2005). Generalised shot noise Cox processes. Adv. Appl. Prob. 37, 4874.CrossRefGoogle Scholar
[16]Møller, J. and Torrisi, G. L. (2007). The pair correlation function of spatial Hawkes processes. Statist. Prob. Lett. 77, 9951003.CrossRefGoogle Scholar
[17]Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
[18]Myllymäki, M. et al. (2017). Global envelope tests for spatial processes. J. R. Statist. Soc. B 79, 381404.CrossRefGoogle Scholar
[19]Neyman, J. and Scott, E. L. (1958). Statistical approach to problems of cosmology. J. R. Statist. Soc. B 20, 143.Google Scholar
[20]Shimatani, I. K. (2010). Spatially explicit neutral models for population genetics and community ecology: extensions of the Neyman-Scott clustering process. Theoret. Pop. Biol. 77, 3241.CrossRefGoogle ScholarPubMed
[21]Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Functional Anal. 205, 414463.CrossRefGoogle Scholar
[22]Thomas, M. (1949). A generalization of Poisson's binomial limit for use in ecology. Biometrika 36, 1825.CrossRefGoogle ScholarPubMed
[23]Van Lieshout, M. N. M. and Baddeley, A. J. (2002). Extrapolating and interpolating spatial patterns. In Spatial Cluster Modelling, Chapman & Hall/CRC, Boca Raton, FL, pp. 6186.Google Scholar
[24]Wiegand, T., Gunatilleke, S., Gunatilleke, N. and Okuda, T. (2007). Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88, 30883102.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 55 *
View data table for this chart

* Views captured on Cambridge Core between 16th November 2018 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-2v79d Total loading time: 0.256 Render date: 2020-12-02T01:00:51.743Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 00:05:27 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pair correlation functions and limiting distributions of iterated cluster point processes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pair correlation functions and limiting distributions of iterated cluster point processes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pair correlation functions and limiting distributions of iterated cluster point processes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *