Skip to main content Accessibility help

Influence of soybean bioactive peptides on growth performance, nutrient utilisation, digestive tract development and intestinal histology in broilers

  • M. R. Abdollahi (a1), F. Zaefarian (a1), Y. Gu (a2), W. Xiao (a2), J. Jia (a2) and V. Ravindran (a1)...


A biologically active peptide derived from soybeans by enzymatic hydrolysis was evaluated for its potential benefits on chicken growth performance, apparent ileal nutrient digestibility and intestinal histology in young broilers. Seven broiler starter diets, based on maize and soybean meal, were formulated to contain 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg of a commercial soybean bioactive peptide (SBP) product (Fortide, Chengdu Mytech Biotech Co. Ltd., Chengdu, Sichuan, China). All diets were equivalent in respect of energy density, and digestible protein, amino acids, and other nutrients. A total of 336, one-day-old male broilers (Ross 308) were allocated to 42 cages (eight birds/cage), which were randomly assigned to the six dietary treatments. There was no significant effect of SBP on weight gain and feed intake of the birds. A significant (P < 0.01) effect of SBP was observed for FCR. Inclusion of 1.0, 2.0, 3.0 and 4.0 g SBP/kg of feed resulted in similar FCR values to the diet with no SBP, addition of SBP to the diets at 5.0 and 6.0 g/kg of feed resulted in lower (P < 0.05) FCR compared to the diet with no SBP. Inclusion of SBP had no effect (P > 0.05) on apparent ileal digestibility of nutrients and energy utilisation. Though not statistically significant, SBP inclusion, regardless of level, resulted in 5.7% and 6.3% increases in digestibility of dry matter and nitrogen, respectively. Birds receiving no SBP had the shortest villi and those fed SBP at 3.0 and 6.0 g/kg of feed tended (P = 0.075) to have the greatest villus height. The current findings suggested that including SBP in broiler diets may benefit production through improving feed efficiency, and, to some extent, nutrient digestion and intestinal histology parameters.


Corresponding author

* Corresponding author:


Hide All
Aachary, A.A. and Thiyam, U. (2012) A pursuit of the functional nutritional and bioactive properties of canola proteins and peptides. Critical Reviews in Food Science and Nutrition, 52: 965979.
Alashi, A.M., Blanchard, C.L., Mailer, R.J. and Agboola, S.O. (2013) Technological and bioactive functionalities of canola meal proteins and hydrolysates. Food Reviews International, 29: 231260.
AOAC. (2005) Official Methods of Analysis, 18th edition. AOAC International, Washington DC.
Bao, H., She, R., Liu, T., Zhang, Y., Peng, K.S., Luo, D., Yue, Z., Ding, Y., Hu, Y., Liu, W. and Zhai, L. (2009) Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poultry Science, 88: 291297.
Bryden, W.L., Li, X., Ravindran, G., Hew, L.I. and Ravindran, V. (2009) Ileal Digestible Amino Acid Values in Feedstuffs for Poultry. Rural Industries Research and Development Corporation, Canberra, Australia.
Dust, J.M., Grieshop, C.M., Parsons, C.M., Karr-Lilienthal, L.K., Schasteen, C.S., Quigley, J.D., Merchen, N.R. and Fahey, G.C. (2005) Chemical composition, protein quality, palatability, and digestibility of alternative protein sources for dogs. Journal of Animal Science, 83: 24142422.
Dziuba, J., Minkiewicz, P. and Nalecz, D. (1999) Biologically active peptides from plant and animal proteins. Polish Journal of Food and Nutrition Sciences, 8: 316.
Feng, J., Liu, X., Xu, Z.R., Wang, Y.Z. and Liu, J.X. (2007) Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poultry Science, 86: 11491154.
Hancock, R.E. and Sahl, H.G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24: 15511557
He, R., Girgih, A.T., Malomo, S.A., Ju, X. and Aluko, R.E. (2013) Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5: 219227.
Hill, F.W. and Anderson, D.L. (1958) Comparison of metabolisable energy and productive energy determinations with growing chicks. Journal of Nutrition, 64: 587603.
Jin, Z., Yang, Y.X., Choi, J.Y., Shinde, P.L., Yoon, S.Y., Hahn, T.W., Lim, H.T., Park, Y., Hahm, K.S., Joo, J.W. and Chae, B.J. (2008) Potato (Solanum tuberosum L. cv. Golden valley) protein as a novel antimicrobial agent in weanling pigs. Journal of Animal Science, 86: 15621572.
Kamnerdpetch, C., Weiss, M., Kasper, C. and Scheper, T. (2007) An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40: 508514.
Karimzadeh, S., Rezaei, M. and Teimouri Yansari, A. (2016) Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens. Poultry Science Journal, 4: 2736.
Kiers, J.L., Meijer, J.C., Nout, M.J.R., Rombouts, F.M., Nabuurs, M.J.A. and Van der Meulen, J. (2003) Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. Journal of Applied Microbiology, 95: 545552.
Kitts, D.D. and Weiler, K. (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9: 13091323.
Lahl, W.J. and Braun, S.D. (1994) Enzymatic production of protein hydrolysates for food use. Food Technology, 48: 6871.
Li, C.H., Matsui, T., Matsumoto, K., Yamasaki, R. and Kawasaki, T. (2002) Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein. Journal of Peptide Science, 8: 267–74.
Liu, T., She, R., Wang, K., Bao, H., Zang, Y., Luo, D., Hu, Y., Ding, Y., Wang, D. and Peng, K. (2008) Effect of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chicken. Poultry Science, 87: 250254.
Lu, J., Zeng, Y., Hou, W., Zhang, S., Li, L., Luo, X., Xi, W., Chen, Z. and Xiang, M. (2012) The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. The Journal of Nutritional Biochemistry, 23: 1449–57.
Mateos, G.G., Mohiti-Asli, M., Borda, E., Mirzaie, S. and Frikha, M. (2014) Effect of inclusion of porcine mucosa hydrolysate in diets varying in lysine content on growth performance and ileal histomorphology of broilers. Animal Feed Science and Technology, 187: 5360.
Matsui, T., Matsufuji, H., Seki, E., Osajima, K., Nakashima, M. and Osajima, Y. (1993) Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline pro-tease hydrolyzates derived from sardine muscle. Bioscience, Biotechnology, and Biochemistry, 57: 922925.
McCalla, J., Waugh, T. and Lohry, E. (2010) Protein hydrolysates/peptides in animal nutrition. In: Pasupuleti, V.K. and Demain, A. L. (Eds.,), Protein Hydrolysates in Biotechnology, pp. 179190.
Meisel, H. (2007) Food-derived bioactive proteins and peptides as potential components of nutraceuticals. Current Pharmaceutical Design, 13: 771772.
Muir, W.I., Lynch, G.W., Williamson, P. and Cowieson, A.J. (2013) The oral administration of meat and bone meal-derived protein fractions improved the performance of young broiler chicks. Animal Production Science, 53: 369377.
NRC. (1994) Nutrient Requirements of Poultry, National Academy Press, Washington, DC.
Pan, M., Jiang, T.S. and Pan, J.L. (2011) Antioxidant activities of rapeseed protein hydrolysates. Food and Bioprocess Technology, 4: 11441152.
Pihlanto-Leppälä, A. (2001) Bioactive peptides derived from bovine proteins: opioid and ace-inhibitory peptides. Trends in Food Science and Technology, 11: 347356.
Ravindran, V., Hew, L.I., Ravindran, G. and Bryden, W.L. (2005) Apparent ileal digestibility of amino acids in feed ingredients for broiler chickens. Animal Science, 81: 8597.
Rolle, R.S. (1998) Review: Enzyme applications for agro-processing in developing countries: An inventory of current and potential applications. World Journal of Microbiology and Biotechnology, 14: 611619.
Ross, (2014) Ross 308 Broiler: Nutrition Specification, Ross Breeders Limited, Newbridge, Midlothian, Scotland, UK.
SAS. (2004) SAS® Qualification Tools User's Guide. Version 9.1.2. SAS Institute Inc., Cary, NC.
Sathe, S.K., Teuber, S.S. and Roux, K.H. (2005) Effects of food processing on the stability of food allergens. Biotechnology Advances, 23: 423429.
Short, F.J.P., Gorton, J., Wiseman, J. and Boorman, K.N. (1996) Determination of titanium oxide added as an inert marker in chicken digestibility studies. Animal Feed Science and Technology, 59: 215221.
Singh, B.P., Vij, S. and Hati, S. (2014) Functional significance of bioactive peptides derived from soybean. Peptides, 54: 171179.
Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M. and Tu, Q. (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British Journal of Nutrition, 101: 9981005.
Wang, F.Q. (2005) Effects of bioactive peptide as feed additive on the performance, immune function and protein metabolism rate in broiler chicken. Master's Thesis, China Agricultural University.
Wang, J.P., Liua, N., Songa, M.Y., Qin, C.L. and Ma, C.S. (2011) Effect of enzymolytic soybean meal on growth performance, nutrient digestibility and immune function of growing broilers. Animal Feed Science and Technology, 169: 224229.
Wen, L.F. and He, J.G. (2012) Dose–response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. British Journal of Nutrition, 108: 17561763.
Wynstra, R.J. (1986) Expanding the use of soybeans. Champaign: College of Agriculture, University of Illinois at Urbana. pp. 20.
Yang, Z., Gu, H., Zhang, Y., Wang, L. and Xu, B. (2009) Small molecule hydrogels based on a class of anti-inflammatory agents. Chemical Communications, 2: 208209.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed