Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T17:22:19.795Z Has data issue: false hasContentIssue false

Using APSIM to explore wheat yield response to climate change in the North China Plain: the predicted adaptation of wheat cultivar types to vernalization

Published online by Cambridge University Press:  29 November 2012

Y. ZHANG
Affiliation:
College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
L. P. FENG*
Affiliation:
College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
J. WANG
Affiliation:
College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
E. L. WANG
Affiliation:
CSIRO Land and Water, Canberra, ACT 2601, Australia
Y. L. XU
Affiliation:
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
*
*To whom all correspondence should be addressed. Email: fenglp@cau.edu.cn

Summary

Cultivar selection is a dominant factor in crop production to obtain high yield. While previous studies have evaluated a range of impacts and adaptation of climate change (CC) on crop yield, few studies have focused on evaluating the effectiveness of changing cultivars with different vernalization requirements as an adaptation. In the present study, mean and inter-annual variability of yield were quantified for three winter wheat cultivar types at three ecological sites (Shangzhuang in Beijing, Quzhou in Hebei and Huangfanqu in Henan) in the North China Plain, by linking a crop model and the outputs of Providing Regional Climates for Impacts Studies (PRECIS) for both the baseline (1961–90) and future SRES scenarios A2 and B2 (2070–2100). The results showed that a warming trend prolonged the length of the vegetative growth period of local cultivars through reduced vernalization, generally leading to a negative impact on yield. However, the introduction of cultivars with relatively lower vernalization demands from warmer southern to cooler northern regions could be an effective adaptation strategy to offset the negative impact of climatic change. Adjustment in cultivars increased yield at Shangzhuang and maintained it at Quzhou and Huangfanqu. Elevated CO2 would significantly increase yield in the future with or without considering the sensitivities of the selected cultivars. The inter-annual variability of yield generally increased in the A2 scenario, but decreased in the B2 scenario. Overall, winter wheat with semi-winter types or weak-winter types would grow preferentially, while cultivars with winter types would probably be reduced in future.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, V. A. & Hoogenboom, G. (2000). Vulnerability and adaptation assessments of agricultural crops under climate change in the Southeastern USA. Theoretical and Applied Climatology 67, 4563.CrossRefGoogle Scholar
Alexandrov, V., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impacts of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evaporation: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO.Google Scholar
Anderson, W. K., Smith, R. C. G. & Mcwilliam, J. R. (1978). A systems approach to the adaptation of sunflower to new environments I. Phenology and development. Field Crops Research 1, 141152.CrossRefGoogle Scholar
Anwar, M. R., O'Leary, G., Mcneil, D., Hossain, H. & Nelson, R. (2007). Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research 104, 139147.CrossRefGoogle Scholar
Brooking, I. R. & Jamieson, P. D. (2002). Temperature and photoperiod response of vernalization in near-isogenic lines of wheat. Field Crops Research 79, 2138.CrossRefGoogle Scholar
Chujo, H. (1966). Difference in vernalization effect in wheat under various temperatures. Proceedings of the Crop Science Society of Japan 35, 177186.CrossRefGoogle Scholar
Craigon, J., Atherton, J. G. & Sweet, N. (1995). Modelling the effects of vernalization on progress to final leaf appearance in winter wheat. Journal of Agricultural Science, Cambridge 124, 369377.CrossRefGoogle Scholar
Cui, D. C. & Zheng, D. W. (1996). Frost damage. In Wheat in China (Ed. Jin, S. B.), pp. 766772. Beijing: China Agriculture Press (in Chinese).Google Scholar
Cure, J. D. & Acock, B. (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38, 127145.CrossRefGoogle Scholar
Dennis, E. S. & Peacock, W. J. (2009). Vernalization in cereals. Journal of Biology 8, 57. DOI:10.1186/jbiol156.CrossRefGoogle ScholarPubMed
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Evenson, R. E. & Gollin, D. (2003). Assessing the impact of the green revolution, 1960 to 2000. Science 300, 758762.CrossRefGoogle ScholarPubMed
Feng, L. P., Gao, L. Z., Jin, Z. Q. & Ma, X. M. (1997). Studies on the simulation model for wheat phenology. Acta Agronomica Sinica 23, 418424 (in Chinese).Google Scholar
Feng, S. W., Dong, N., Hu, T. Z., Li, G., Li, X. H. & Ru, Z. G. (2010). Analysis on the integrated winter hardness of different wheat varieties. Journal of Henan Institute of Science and Technology 38, 47 (in Chinese).Google Scholar
Guo, R. P., Lin, Z. H., Mo, X. G. & Yang, C. L. (2010). Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management 97, 11851194.CrossRefGoogle Scholar
Jones, C. A., Ritchie, J. T., Kiniry, J. R., Godwin, D. C. & Otter, S. I. (1983). The CERES Wheat and Maize Models. In Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, 21–26 March 1983, ICRISAT Center, India (Ed. Kumble, V.), pp. 95100. Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S., Jenkins, G. J. & Mitchell, J. F. B. (2004). Generating High Resolution Climate Change Scenarios using PRECIS. Exeter, UK: Met Office Hadley Centre.Google Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargeaves, J. N. G., Meinke, H., Hochman, Z., Mclean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., Mccown, R. L., Freebairn, D. M. & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267288.CrossRefGoogle Scholar
Li, S. P., Wang, J. L. & Zhao, S. Z. (2001). Evolution and change of wheat varietal types in North China Plain. In Wheat in North China Plain (Ed. Cao, G. C.), pp. 4750. Beijing: China Agriculture Publications (in Chinese).Google Scholar
Li, M. S., Wang, D. L., Zhong, X. L., Wang, C. Y., Su, C. H., Zhao, P., Yan, X. Y., Kiribuchi-Otobe, C. & Yoshida, H. (2005). Current situation and prospect of research on frost of winter wheat. Journal of Natural Disasters 14, 7278 (in Chinese).Google Scholar
Liu, S. X., Mo, X. G., Lin, Z. H., Xu, Y. Q., Ji, J. J., Wen, G. & Richey, J. (2010). Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural Water Management 97, 11951209.CrossRefGoogle Scholar
Luo, Q. Y., Bellotti, W., Williams, M. & Wang, E. L. (2009). Adaptation to climate change of wheat growing in South Australia: analysis of management and breeding strategies. Agriculture, Ecosystems and Environment 129, 261267.CrossRefGoogle Scholar
Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology 12, 7580.CrossRefGoogle ScholarPubMed
Parry, M., Rosenzweig, C. & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society London B: Biological Sciences 360, 21252138.CrossRefGoogle ScholarPubMed
Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., Centeno, G. S., Khush, G. S. & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101, 99719975.CrossRefGoogle ScholarPubMed
Qian, W. H. & Lin, X. (2004). Regional trends in recent temperature indices in China. Climate Research 27, 119134.CrossRefGoogle Scholar
Reyenga, P. J., Howden, S. M., Meinke, H. & Mckeon, G. M. (1999). Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environmental Modelling and Software 14, 297306.CrossRefGoogle Scholar
Ritchie, J. T. (1991). Wheat phasic development. In Modeling Plant and Soil Systems (Eds Hanks, J. & Ritchie, J. T.), pp. 3154. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
Rosenzweig, C. & Tubiello, F. N. (1996). Effects of changes in minimum and maximum temperature on wheat yields in the central USA simulation study. Agricultural and Forest Meteorology 80, 215230.CrossRefGoogle Scholar
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. (2010). Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography 19, 607620.CrossRefGoogle Scholar
Song, Y. L., Chen, D. L. & Dong, W. J. (2006). Influence of climate on winter wheat productivity in different climate regions of China, 1961–2000. Climate Research 32, 219227.CrossRefGoogle Scholar
Stapper, M. & Lilley, J. M. (2001). Evaluation of Simtag and Nwheat in simulating wheat phenology in southeasternAustralia. In Science and Technology: Delivering Results for Agriculture, Proceedings of 10th Australian Agronomy Conference (Eds Rowe, B. & Mendham, N.), pp. 13001430. Hobart, Tasmania. Australian: Australian Society of Agronomy.Google Scholar
Sun, H. Y., Liu, C. M., Zhang, X. Y., Shen, Y. J. & Zhang, Y. Q. (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management 85, 211218.CrossRefGoogle Scholar
Tao, F. L. & Zhang, Z. (2010). Adaptation of maize production to climate change in North China Plain: Quantify the relative contributions of adaptation options. European Journal of Agronomy 33, 103116.CrossRefGoogle Scholar
Tao, F. L., Yokozawa, M., Xu, Y. L., Hayashi, Y. & Zhang, Z. (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology 138, 8292.CrossRefGoogle Scholar
Tao, F. L., Yokozawa, M., Liu, J. Y. & Zhang, Z. (2008). Climate–crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research 38, 8394.CrossRefGoogle Scholar
Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, Cambridge 150, 537555.CrossRefGoogle Scholar
Torriani, D. S., Calanca, P., Schmid, S., Beniston, M. & Fuhrer, J. (2007). Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research 34, 5969.CrossRefGoogle Scholar
Tottman, D. R. (1977). The identification of growth stages in winter wheat with reference to the application of growth regulating herbicides. Annals of Applied Biology 87, 213224.CrossRefGoogle Scholar
Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S. & Jones, J. W. (2002). Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research 20, 259270.CrossRefGoogle Scholar
Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., Chapman, S. C., Hargreaves, J. N. G., Huth, N. I. & Mclean, G. (2002). Development of generic crop module template in the cropping system model APSIM. European Journal of Agronomy 18, 121140.CrossRefGoogle Scholar
Wang, S. Z., Mei, N. & Miao, G. Y. (1996). The photoperiodic and thermoperiodic responses in wheat Varieties. In Wheat in China (Ed. Jin, S. B.), pp. 127138. Beijing: China Agriculture Publications (in Chinese).Google Scholar
Weir, A. H., Bragg, P. L., Porter, J. R. & Rayner, J. H. (1984). A winter wheat crop simulation model without water or nutrient limitations. Journal of Agricultural Science, Cambridge 102, 371382.CrossRefGoogle Scholar
Willmott, C. J., Ackleson, G. S., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J. & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research 90, 89959005.CrossRefGoogle Scholar
Wolf, J., van Oijen, M. & Kempenaar, C. (2002). Analysis of the experimental variability in wheat responses to elevated CO2 and temperature. Agriculture, Ecosystems and Environment 93, 227247.CrossRefGoogle Scholar
Xiong, W., Lin, E. D., Ju, H. & Xu, Y. L. (2007). Climate change and critical thresholds in China's food security. Climatic Change 81, 205221.CrossRefGoogle Scholar
Xiong, W., Conway, D., Lin, E. D., Xu, Y. L., Ju, H., Jiang, J. H., Holman, I. & Li, Y. (2009). Future cereal production in China: The interaction of climate change, water availability and socio-economic scenarios. Global Environmental Change 19, 3444.Google Scholar
Zadoks, J. C., Chang, T. T. & Zonzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zhang, B., Zhao, M., Dong, Z. Q., Li, J. G., Chen, C. Y. & Sun, R. (2007). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agronomica Sinica 33, 612619 (in Chinese).Google Scholar
Zhou, Y., He, Z. H., Sui, X. X., Xia, X. C., Zhang, X. K. & Zhang, G. S. (2007). Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science 47, 245253.CrossRefGoogle Scholar