Skip to main content Accessibility help
×
Home

Statistical control charts as a support tool for the management of livestock production

  • K. MERTENS (a1), E. DECUYPERE (a2), J. DE BAERDEMAEKER (a1) and B. DE KETELAERE (a1)

Summary

The concepts of control charts, an important tool in statistical process control, are commonly used for monitoring industrial production processes. In the context of precision livestock farming, their use has been demonstrated by many, although the statistical properties of livestock process data often do not comply with the basic assumptions of such control charts. The focus of the current review is on the most important aspects, recommendations, pitfalls and opportunities for the development and performance of control charts on livestock process data. An important hurdle to tackle is the statistical characteristics of the raw livestock process data which are mostly violating the control charts’ assumptions. An integrated approach, like synergistic control, appears to be promising in handling this issue. The availability of real-time on-farm validation of proposed systems will be crucial for lifting them from the potential level to direct practical relevance.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: kristof.mertens@biw.kuleuven.be

References

Hide All
Akachi, S. (1971). Control charts using removal rate and egg-production obtained from 1 to 29 weeks old of chickens. Japanese Journal of Veterinary Science 33(Suppl.), 284.
Alwan, L. C. & Roberts, H. V. (1995). The problem of misplaced control limits. Applied Statistics 44, 269278.
Banhazi, T., Dunn, M., Cook, P., Black, J., Durack, M. & Johnnson, I. (2007). Development of precision livestock farming (PLF) technologies for the Australian pig industry. In Precision Livestock Farming '07 (Ed. Cox, S.), pp. 219228. Wageningen, The Netherlands: Wageningen Academic Publishers.
Bebbington, M., Lai, C. D. & Zitikis, R. (2009). Modeling lactation curves: classical parametric models re-examined and modified. Journal of Applied Statistics 36, 121133.
Blackmore, B. S. (2007). A systems view of agricultural robots. In Precision Agriculture ‘07 (Ed. Stafford, J. V.), pp. 2331. Wageningen, The Netherlands: Wageningen Academic Publishers.
Borror, C. M., Montgomery, D. C. & Runger, G. C. (1999). Robustness of the EWMA control chart to non-normality. Journal of Quality Technology 31, 309316.
Box, G. E. P. & Paniagua-Quiñones, C. (2007). Two charts not one. Quality Engineering 19, 93100.
Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods, 2nd edn.New York: Springer-Verlag.
Cornou, C., Vinther, J. & Kristensen, A. R. (2008). Automatic detection of oestrus and health disorders using data from electronic sow feeders. Livestock Science 118, 262271.
Cowen, P., Fernandez, D. & Barnes, H. (1994). Surveillance strategies for monitoring variation in animal health and productivity: the use of statistical process control in the turkey industry. The Kenya Veterinarian 18, 202204.
Darmani-Kuhi, H., Kebreab, E., Lopez, S. & France, J. (2003). An evaluation of different growth functions for describing the profile of live weight with time (age) in meat and egg strains of chicken. Poultry Science 82, 15361543.
de Mol, R., Keen, A., Kroeze, G. & Achten, J. M. F. H. (1999). Description of a detection model for oestrus and diseases in dairy cattle based on time series analysis combined with a Kalman filter. Computers and Electronics in Agriculture 22, 171185.
de Vargas, V. C. C., Lopes, L. F. D. & Souza, A. M. (2004). Comparative study of the performance of the CuSum and EWMA control charts. Computers and Industrial Engineering 46, 707724.
de Vries, A. (2001). Statistical process control charts applied to dairy herd production, PhD thesis, University of Minnesota, USA.
de Vries, A. & Conlin, B. J. (2003). Design and performance of statistical process control charts applied to estrous detection efficiency. Journal of Dairy Science 86, 19701984.
de Vries, A. & Conlin, B. J. (2005). A comparison of the performance of statistical quality control charts in a dairy production system through stochastic simulation. Agricultural Systems 84, 317341.
de Vries, A., Conlin, B. J., Marsh, W. & Reneau, J. (1997 a). Monitoring daily milk weights with statistical process control techniques. Journal of Dairy Science 80(Suppl. 1), p. 230.
de Vries, A., Conlin, B. J., Reneau, J., Kinsel, M. & Marsh, W. (1997 b). Some illustrations of the use of Statistical Process Control techniques in monitoring dairy herd performance. Epidémiologie et Santé Animal 31–32, 13.11.113.11.3.
Deen, J. (1997). Using statistical process control in swine production. In Proceedings of the North American Veterinary Conference, Vol. 11. pp. 987988. Orlando, FL: NAVC (www.tnavc.org).
del Castillo, E. (2002). Statistical Process Adjustment for Quality Control. New York: John Wiley and Sons, Inc.
Deming, W. (1986). Out of the Crisis. Cambridge, MA: Massachusetts Institute of Technology.
DeVor, R. E., Chang, T. & Sutherland, J. W. (1992). Statistical Quality Design and Control: Contemporary Concepts and Methods. Englewood Cliffs, NJ: Prentice Hall Inc.
Dial, G. D., FitzSimmons, M., BeVier, G. W. & Wiseman, B. S. (1994). Systems approaches for improving the productivity of the breeding herd. In Leman Swine Conference Proceedings (Ed. Allen, D.), pp. 5054. St. Paul, MN: Veterinary Outreach Programs, University of Minnesota.
Dial, G. D.Duangkaew, C. & Rademacher, C. (1996). Statistical process control - Application to swine production. In Leman Swine Conference Proceedings (Ed. Allen, D.), pp. 5383. St. Paul, MN: Veterinary Outreach Programs, University of Minnesota.
Dohoo, I. R. (1993). Monitoring livestock health and production: service – epidemiology's last frontier? Preventive Veterinary Medicine 18, 4352.
Emmans, G. C. & Kyriazakis, I. (1997). Models of pig growth: problems and proposed solutions. Livestock Production Science 51, 119129.
Engler, J., Tölle, K.-H., Timm, H. H., Hohls, E. & Krieter, J. (2005). Control charts applied to individual sow farm analysis. In Precision Livestock Farming ‘05 (Ed. Cox, S.), pp. 319325. Wageningen, The Netherlands: Wageningen Academic Publishers.
Engler, J., Tölle, K.-H., Timm, H. H., Hohls, E. & Krieter, J. (2009). Control charts applied to pig farming data. Archiv Tierzucht 52, 272283.
Fernandez, D. V. (1995). Determinants of productivity in commercial tom turkey production. PhD thesis, North Carolina State University, Raleigh, NC, USA.
Frost, A. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. A. & Wathes, C. M. (1997). A review of livestock monitoring and the need for integrated systems. Computers and Electronics in Agriculture 17, 139159.
Galli, A., Signori, T. & Balduzzi, D. (1998). Statistical methods to produce ‘good’ bovine frozen semen. Reproduction in Domestic Animals 33, 125132.
Grennstam, N. (2005). On Predicting Milk Yield and Detection of Ill Cows. Stockholm, Sweden: KTH, Royal Institute of Technology.
Hawkins, D. M. & Olwell, D. H. (1998). Cumulative Sum Charts and Charting for Quality Improvement. New York: Springer-Verlag.
Huirne, R. B. M. (1990). Basic concepts of computerized support for farm management decisions. European Review of Agricultural Economics 17, 6984.
Kniffen, T. (1994). Potential uses of SPC in a pork production system. In Leman Swine Conference Proceedings (Ed. Allen, D.), pp. 112. St. Paul, MN: Veterinary Outreach Programs, University of Minnesota.
Koketsu, Y., Duangkaew, C., Dial, G. D. & Reeves, D. E. (1999). Within-farm variability in number of females mated per week during a one-year period and breeding herd productivity on swine farms. Journal of the American Veterinary Medical Association 214, 520524.
Krieter, J., Kirchner, K., Engler, J. & Tölle, K.-H. (2005). Computer-based analysis of sow herd performance. Archiv Tierzucht 48, 346358.
Krieter, J., Engler, J., Tölle, K.-H., Timm, H. & Hohls, E. (2009). Control charts applied to simulated sow herd datasets. Livestock Science 121, 281287.
Kutner, M., Nachtsheim, C., Neter, J. & Li, W. (2005). Applied Linear Statistical Models, 5th edn.New York: McGraw-Hill/Irwin.
Lokhorst, C. (1996). Mathematical curves for the description of input and output variables of the daily production process in aviary housing systems for laying hens. Poultry Science 75, 838848.
Lukas, J. M., Hawkins, D. M., Kinsel, M. L. & Reneau, J. K. (2005). Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence. Journal of Dairy Science 88, 39443952.
Lukas, J. M., Reneau, J. K. & Linn, J. G. (2008). Water intake and dry matter intake changes as a feeding management tool and indicator of health and estrus status in dairy cows. Journal of Dairy Science 91, 33853394.
Lukas, J. M., Reneau, J. K., Wallace, R., Hawkins, D. & Munoz-Zanzi, C. (2009). A novel method of analyzing daily milk production and electrical conductivity to predict disease onset. Journal of Dairy Science 92, 59645976.
Madsen, T. N. & Kristensen, A. R. (2005). A model for monitoring the condition of young pigs by their drinking behaviour. Computers and Electronics in Agriculture 48, 138154.
Marsh, W. E., de Vries, A., Reneau, J. K. & Kinsel, M. L. (1997). Monitoring performance: Statistical process control in dairy herd management. In Annual Northeast Dairy Production Medicine Symposium, 6th edn, pp. 3446. Syracuse, NY: NEDPMS.
Mertens, K. (2009). An intelligent system for optimizing the production and quality of consumption eggs based on synergistic control. PhD thesis, Katholieke Universiteit Leuven, Belgium.
Mertens, K., De Ketelaere, B., Vaesen, I., Löffel, J., Ostyn, B., Kemps, B., Kamers, B., Bamelis, F., Zoons, J., Darius, P., Decuypere, E. & De Baerdemaeker, J. (2008). Data-based design of an intelligent quality control chart for the daily monitoring of the average egg weight. Computers and Electronics in Agriculture 61, 222232.
Mertens, K., Vaesen, I., Löffel, J., Kemps, B., Kamers, B., Zoons, J., Darius, P., Decuypere, E., De Baerdemaeker, J. & De Ketelaere, B. (2009). An intelligent control chart for monitoring of autocorrelated egg production process data based on a synergistic control strategy. Computers and Electronics in Agriculture 69, 100111.
Mertens, K., Vaesen, I., Löffel, J., Kemps, B., Kamers, B., Perianu, C., Zoons, J., Darius, P., Decuypere, E., De Baerdemaeker, J. & De Ketelaere, B. (2010). The transmission color value: A novel egg quality measure for recording shell color used for monitoring the stress and health status of a brown layer flock. Poultry Science 89, 609617.
Montgomery, D. C. (2009). Introduction to Statistical Quality Control, 6th edn.Hoboken, NJ: John Wiley and Sons Inc.
Montgomery, D. C., Jennings, C. L. & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. Hoboken, NJ, USA: John Wiley and Sons Inc.
Morrison, R. B., Dial, G. D., Bahnson, P. B., Marsh, W. E., Collins, J. E. & Polson, D. (1997). Using statistical process control to investigate reproductive failure. In Current Therapy in Large Animal Theriogenology (Ed. Youngquist, R. S.), pp. 770775. Philadelphia, PA: W.D. Saunders Company.
Niehoff, D., Tölle, K.-H. & Krieter, J. (2007). Fertility monitoring in dairy herds. Zuchtungskunde 79, 275286.
Noordhuizen, J., Frankena, K., Stassen, E. & Brand, A. (1992). Applied epidemiology in aid to dairy herd health programs. In Proceedings of the XVII World Buiatric Congress and the 25th American Association of Bovine Practitioners Conference (Ed. Williams, E. I.). Vol. 2, St. Paul, MN, USA, pp. 611.
Ostyn, B., De Ketelaere, B., Mertens, K., Anthonis, J., Zoons, J. & De Baerdemaeker, J. (2006). Control charts for online monitoring of non-stationary processes. In Proceedings of the 3rd IFAC International Workshop on Bio-Robotics, Information Technology and Intelligent Control for Bioproduction Systems (BIO-ROBOTICS III), 9–10 September 2006, Sapporo, Japan (Eds Kataoka, T., Noguchi, N. & Murase, H.). Laxenburg, Austria: International Federation of Automatic Control.
Page, E. S. (1954). Continuous inspection schemes. Biometrika 41, 100114.
Pastell, M. & Madsen, H. (2008). Application of CUSUM charts to detect lameness in a milking robot. Expert Systems with Applications 35, 20322040.
Pleasants, A. B., McCall, D. G. & Sheath, G. W. (1998). Design and application of a cusum quality control chart suitable for monitoring effects on ultimate muscle pH. New Zealand Journal of Agricultural Research 41, 235242.
Polson, D. (1998). SPC=statistical pig control. International Pig Letter 18, 4346.
Polson, D., Baum, D. & Holck, J. T. (1999). Management of livestock systems need to be based on continuous improvement. Feedstuffs 1, 3942.
Quesenberry, C. (1991). SPC Q charts for start-up processes and short or long runs. Journal of Quality Technology 23, 213224.
Quesenberry, C. (1995). On properties of Q charts for variables. Journal of Quality Technology 27, 184203.
Quesenberry, C. (1997). SPC Methods for Quality Improvement. New York: John Wiley and Sons.
Quimby, W. F., Sowell, B. F., Bowman, J. G. P., Branine, M. E., Hubbert, M. E. & Sherwood, H. W. (2001). Application of feeding behaviour to predict morbidity of newly received calves in a commercial feedlot. Canadian Journal of Animal Science 81, 315320.
Ravindranathan, N. & Unni, A. K. K. (1990). A study on consistency in body weights of chicks using Shewhart control charts. Cheiron 19, 156158.
Reneau, J. K. & Kinsel, M. L. (2001). Record systems and herd monitoring in production-oriented health and management programs in food producing animals. In Herd Health: Food Animal Production Medicine, 3rd edn (Ed. Radostits, M. O.), pp. 107146. Philadelphia, PA: W.D. Saunders Company.
Reneau, J. K. & Lukas, J. (2006). Using statistical process control methods to improve herd performance. Veterinary Clinics of North America: Food Animal Practice 22, 171193.
Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics 1, 239250.
Roush, W. B., Tomiyama, K., Garnaoui, K. H., D'Alfonso, T. H. & Cravener, T. L. (1992). Kalman filter and an example in poultry production responses. Computers and Electronics in Agriculture 6, 347356.
Sard, D. M. (1979). Dealing with data: the practical use of numerical information (14) Monitoring changes. Veterinary Record 105, 323328.
Schmilovitch, Z., Shmulevich, I., Notea, A. & Maltz, E. (2000). Near infrared spectrometry of milk in its heterogeneous state. Computers and Electronics in Agriculture 29, 195207.
Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Products. Princeton, NJ: D. Van Nostrand.
Silvestre, A. M., Martins, A. M., Santos, V. A., Ginja, M. M. & Colaço, J. A. (2009). Lactation curves for milk, fat and protein content in dairy cows: a full approach. Livestock Science 122, 308313.
St-Pierre, N. R. & Cobanov, B. (2007 a). A model to determine the optimal sampling schedule of diet components. Journal of Dairy Science 90, 53835394.
St-Pierre, N. R. & Cobanov, B. (2007 b). Optimal sampling schedule of diet components: Model robustness to departure from assumptions. Journal of Dairy Science 90, 53955404.
Thysen, I. (1993). Monitoring bulk tank somatic cell counts by a multiprocess Kalman filter. Acta Agriculturae Scandinavica. Section A. Animal Science 43, 5864.
Tsenkova, R., Atanassova, S., Toyoda, K., Ozaki, Y., Itoh, K. & Fearn, T. (1999). Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition. Journal of Dairy Science 82, 23442351.
Tsenkova, R., Atanassova, S., Itoh, K., Ozaki, Y. & Toyoda, K. (2000). Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. Journal of Animal Science 78, 515522.
Van Bebber, J., Reinsch, N., Junge, W. & Kalm, E. (1999). Monitoring daily milk yields with a recursive test day repeatability model (kalman filter). Journal of Dairy Science 82, 24212429.
Wadsworth, H. M., Stephens, K. S. & Godfrey, A. B. (2002). Modern Methods for Quality Control Improvement. New York: John Wiley and Sons.
Wathes, C. M., Kristensen, H. H., Aerts, J. M. & Berckmans, D. (2008). Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Computers and Electronics in Agriculture 64, 210.
Wheeler, D. (1995). Advanced Topics in Statistical Process Control – the Power of Shewhart's Charts. Knoxville, TN: SPC Press.
Wieringa, J. E. (1999). Statistical process control for serially correlated data. PhD thesis, Rijksuniversiteit Groningen, The Netherlands.
Wilson, M. R., McMillan, I. & Swaminathan, S. S. (1980). Computerized health monitoring in swine health management. Pig Veterinary Society Proceedings 6, 6471.
Woodall, W. H. (2000). Controversies and contradictions in statistical process control. Journal of Quality Technology 32, 341350.
Woodall, W. H. & Montgomery, D. C. (1999). Research issues and ideas in statistical process control. Journal of Quality Technology 31, 376386.
Wrathall, A. E. (1977). Reproductive failure in the pig: diagnosis and control. Veterinary Record 100, 230237.
Wrathall, A. E. & Hebert, C. N. (1982). Monitoring reproductive performance in the pig herd. Pig Veterinary Society Proceedings 9, 136148.
Ziggers, G. & Bots, J. (1989). The farmer as ‘producer’ of the strategic planning process. In Managing Long-term Developments of the Farm Firm: Strategic Planning and Management. Proceedings of the 23rd Symposium of the European Association of Agricultural Economists, Copenhagen, Denmark (Eds Christensen, J., Rasmussen, S. & Stryg, P.), pp. 1326. Kiel, Germany: Vauk.

Statistical control charts as a support tool for the management of livestock production

  • K. MERTENS (a1), E. DECUYPERE (a2), J. DE BAERDEMAEKER (a1) and B. DE KETELAERE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed