Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T21:16:12.410Z Has data issue: false hasContentIssue false

Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions

Published online by Cambridge University Press:  07 November 2016

F. NAWAZ*
Affiliation:
Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
M. Y. ASHRAF
Affiliation:
Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
R. AHMAD
Affiliation:
Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan
E. A. WARAICH
Affiliation:
Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan
R. N. SHABBIR
Affiliation:
Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
R. A. HUSSAIN
Affiliation:
Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Pakistan
*
*To whom all correspondence should be addressed. Email: fahim5382@gmail.com

Summary

Identification of new effective strategies for improving crop yields under environmental stresses such as drought represent key priorities for researchers around the globe. In the present study, the effects of different methods of exogenous selenium (Se) supply viz. Se seed priming, Se fertigation and Se foliar spray on yield of spring wheat under normal and water deficit conditions were investigated. Two field experiments were conducted using one indigenous drought-tolerant genotype (Kohistan-97) and a sensitive genotype (Pasban-90) to understand the role of Se in improving wheat yield. The experiments were laid out in a split-split plot design with three replications during consecutive years (2011/12 and 2012/13) and the plants were exposed to water stress by withholding irrigation at two different wheat growth stages, viz. tillering and anthesis. It was noted that drought stress significantly affected the yield attributes of wheat; however, exogenous Se supply was observed to be helpful in improving the drought tolerance potential and yield of water-stressed wheat plants through maintenance of plant water status. A significant increase in wheat yield by Se supply was also noted under normal conditions. The normal plants fertigated with Se maintained the highest values for number of productive tillers, spike length, number of grains per spike, thousand-grain weight, biological and grain yield with no significant difference from Se foliar spray at the tillering stage, which was found to be the most effective method of exogenous Se supply for improving wheat yield under water deficit conditions. Moreover, Se fertigation and foliar spray resulted in the maximum accumulation of Se in shoots and gave the highest net return and cost-benefit ratio under drought stress conditions. The present study is one of the few reports on the role of Se in alleviating water stress for obtaining maximum profit in field grown spring wheat.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bittman, S., Buckley, W. T., Zaychuk, K. & Brown, E. A. P. (2000). Seed Coating for Enhancing the Level of Selenium in Crops. USA Patent No. 6,058,649. Alexandria, VA: United States Patent and Trademark Office. Available from: http://www.google.co.uk/patents/US6058649 (verified 6 September 2016).Google Scholar
Boldrin, P. F., Faquin, V., Ramos, S. J., Boldrin, K. V. F., Ávila, F. W. & Guilherme, L. R. G. (2013). Soil and foliar application of selenium in rice biofortification. Journal of Food Composition and Analysis 31, 238244.CrossRefGoogle Scholar
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New Phytologist 173, 677702.CrossRefGoogle ScholarPubMed
Chilimba, A. D. C., Young, S. D., Black, C. R., Meacham, M. C., Lammel, J. & Broadley, M. R. (2012). Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research 125, 118128.CrossRefGoogle Scholar
Cole, J. & Pagay, V. (2015). Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Scientia Horticulturae 191, 1014.CrossRefGoogle Scholar
Curtin, D., Hanson, R., Lindley, T. N. & Butler, R. C. (2006). Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate and timing of sodium selenate application. New Zealand Journal of Crop and Horticultural Science 34, 329339.CrossRefGoogle Scholar
De Temmerman, L., Waegeneers, N., Thiry, C., Du Laing, G., Tack, F. & Ruttens, A. (2014). Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Science of the Total Environment 468–469, 7782.CrossRefGoogle ScholarPubMed
Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, J. A. & Bangarusamy, U. (2005). Selenium – an antioxidative protectant in soybean during senescence. Plant and Soil 272, 7786.CrossRefGoogle Scholar
Djanaguiraman, M., Prasad, P. V. V. & Seppänen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry 48, 9991007.CrossRefGoogle ScholarPubMed
Emam, M. M., Khattab, H. E., Helal, N. M. & Deraz, A. E. (2014). Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Australian Journal of Crop Science 8, 596605.Google Scholar
Feng, R. W., Wei, C. Y., Tu, S. X. & Wu, F. C. (2009). Effects of Se on the uptake of essential elements in Pteris vittata L. Plant and Soil 325, 123132.CrossRefGoogle Scholar
Germ, M., Stibilj, V., Osvald, J. & Kreft, I. (2007). Effect of selenium foliar application on chicory (Cichorium intybus L.). Journal of Agricultural and Food Chemistry 55, 795798.CrossRefGoogle ScholarPubMed
Gissel-Nielsen, G., Gupta, U. C., Lamand, M. & Westermarck, T. (1984). Selenium in soils and plants and its importance in livestock and human nutrition. Advances in Agronomy 37, 397460.CrossRefGoogle Scholar
Good, A. G. & Zaplachinski, S. T. (1994). The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus . Physiologia Plantarum 90, 914.CrossRefGoogle Scholar
Grant, C. A., Buckley, W. T. & Wu, R. G. (2007). Effects of selenium fertilizer source and rate on grain yield and selenium and cadmium concentration of durum wheat. Canadian Journal of Plant Science 87, 703708.CrossRefGoogle Scholar
Habibi, G. (2013). Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101, 3139.CrossRefGoogle Scholar
Han, D., Li, X., Xiong, S., Tu, S., Chen, Z., Li, J. & Xie, Z. (2013). Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environmental and Experimental Botany 95, 614.CrossRefGoogle Scholar
Hanson, B., Garifullina, G. F., Lindblom, S. D., Wangeline, A., Ackley, A., Kramer, K., Norton, A. P., Lawrence, C. B. & Pilon-Smits, E. A. H. (2003). Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytologist 159, 461469.CrossRefGoogle ScholarPubMed
Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology 18, 309318.CrossRefGoogle ScholarPubMed
Hartikainen, H., Xue, T. & Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil 225, 193200.CrossRefGoogle Scholar
Hasanuzzaman, M. & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research 143, 17581776.CrossRefGoogle ScholarPubMed
Ibrahim, H. M. (2014). Selenium pretreatment regulates the antioxidant defense system and reduces oxidative stress on drought-stressed wheat (Triticum aestivum L.) plants. Asian Journal of Plant Science 13, 120128.CrossRefGoogle Scholar
Jackson, M. L. (1962). Soil Chemical Analysis. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., Aziz, T. & Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Sciences 198, 3845.CrossRefGoogle Scholar
Kabata-Pendias, A. (2001). Trace Elements in Soils and Plants, 3rd edn. Boca Raton, FL: CRC Press.Google Scholar
Kahakachchi, C., Boakye, H. T., Uden, P. C. & Tyson, J. F. (2004). Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. Journal of Chromatography A 1054, 303312.CrossRefGoogle ScholarPubMed
Kaldenhoff, R., Ribas-Carbo, M., Sans, J. F., Lovisolo, C., Heckwolf, M. & Uehlein, N. (2008). Aquaporins and plant water balance. Plant Cell and Environment 31, 658666.CrossRefGoogle ScholarPubMed
Krishnaiah, L., Kumar, K. S., Suvardhan, K. & Chiranjeevi, P. (2003). Simple spectrophotometric determination of traces of selenium in environmental samples. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December, 2003 (Eds Bunch, M. J., Madha Suresh, V. & Vasantha Kumaran, T.), pp. 217225. Chennai, India & York, UK: Department of Geography, University of Madras & Faculty of Environmental Studies, York University.Google Scholar
Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K. & Jha, B. (2012). Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiology and Biochemistry 51, 129138.CrossRefGoogle ScholarPubMed
Kuznetsov, V. V., Kholodova, V. P., Kuznetsov, V. I. V. & Yagodin, B. A. (2003). Selenium regulates the water status of plants exposed to drought. Doklady Biological Sciences 390, 266268.CrossRefGoogle ScholarPubMed
Lyons, G., Stangoulis, J. & Graham, R. (2003). High-selenium wheat: biofortification for better health. Nutrition Research Reviews 16, 4560.CrossRefGoogle ScholarPubMed
Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J. C. R., Liu, F. & Graham, R. D. (2009). Selenium increases seed production in Brassica. Plant and Soil 318, 7380.CrossRefGoogle Scholar
Mayak, S., Tirosh, T. & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166, 525530.CrossRefGoogle Scholar
Nawaz, F., Ashraf, M. Y., Ahmad, R. & Waraich, E. A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research 151, 284293.CrossRefGoogle ScholarPubMed
Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A. & Shabbir, R. N. (2014). Selenium (Se) regulates seedling growth in wheat under drought stress. Advances in Chemistry 2014. Article ID 143567. http://dx.doi.org/10.1155/2014/143567.CrossRefGoogle Scholar
Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Shabbir, R. N. & Bukhari, M. A. (2015 a). Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chemistry 175, 350357.CrossRefGoogle ScholarPubMed
Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A. & Khan, S. Z. (2015 b). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety 113, 191200.CrossRefGoogle ScholarPubMed
Passioura, J. B. & Fry, S. C. (1992). Turgor and cell expansion: beyond the Lockhart equation. Australian Journal of Plant Physiology 19, 565576.Google Scholar
Pazurkiewicz-Kocot, K., Galas, W. & Kita, A. (2003). The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid. Cellular and Molecular Biology Letters 8, 97103.Google ScholarPubMed
Proietti, P., Nasini, L., Del Buono, D., D'Amato, R., Tedeschini, E. & Businelli, D. (2013). Selenium protects olive (Olea europaea L.) from drought stress. Scientia Horticulturae 164, 165171.CrossRefGoogle Scholar
Qadir, G., Saeed, M., Cheema, M. A. (1999). Effect of water stress on growth and yield performance of four wheat cultivars. Pakistan Journal of Biological Sciences 2, 236239.CrossRefGoogle Scholar
Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., Bastos, C. E. A. & Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment 56, 584588.CrossRefGoogle Scholar
Sajedi, N. A., Ardakani, M. R., Naderi, A., Madani, H. & Boojar, M. M. A. (2009). Response of maize to nutrients foliar application under water deficit stress conditions. American Journal of Agricultural and Biological Sciences 4, 242248.Google Scholar
Seppänen, M., Turakainen, M. & Hartikainen, H. (2003). Selenium effects on oxidative stress in potato. Plant Science 165, 311319.CrossRefGoogle Scholar
Shabbir, R. N., Waraich, E. A., Ali, H., Nawaz, F., Ashraf, M. Y., Ahmad, R., Awan, M. I., Ahmad, S., Irfan, M., Hussain, S. & Ahmad, Z. (2016). Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.). Environmental Science and Pollution Research 23, 26512662.CrossRefGoogle ScholarPubMed
Shen, Q. Y., Turakainen, M., Seppänen, M. & Mäkela, P. (2008). Effects of selenium on maize ovary development at pollination stage under water deficits. Agricultural Sciences in China 7, 12981307.Google Scholar
Singh, B. R. (1991). Selenium content of wheat as affected by selenate and selenite contained in a Cl-or SO4-based NPK fertilizer. Fertilizer Research 30, 1. doi:10.1007/BF01048821 CrossRefGoogle Scholar
Smrkolj, P., Stibilj, V., Kreft, I. & Germ, M. (2006). Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chemistry 96, 675681.CrossRefGoogle Scholar
Tadina, N., Germ, M., Kreft, I., Breznik, B. & Gaberščik, A. (2007). Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica 45, 472476.CrossRefGoogle Scholar
Tang, Y. X., Wang, H. M., Yang, J. F. & Lv, Y. H. (2011). Studies on the selenium content and selenium enriched technique of winter wheat in Hebei Province. Journal of Triticeae Crops 31, 347351 (in Chinese).Google Scholar
Teimouri, S., Hasanpour, J. & Tajali, A. A. (2014). Effect of Selenium spraying on yield and growth indices of wheat (Triticum aestivum L.) under drought stress condition. International Journal of Advanced Biological and Biomedical Research 2, 20912103.Google Scholar
Terzi, R. & Kadioglu, A. (2006). Drought stress tolerance and the antioxidant enzyme system. Acta Biologica Cracoviensia Series Botanica 48, 8996.Google Scholar
Valadabadi, S. A., Shiranirad, A. H. & Farahani, H. A. (2010). Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. Journal of Ecology and the Natural Environment 2, 154159.Google Scholar
Wang, C. Q. (2011). Water-stress mitigation by selenium in Trifolium repens L. Journal of Plant Nutrition and Soil Science 174, 276282.CrossRefGoogle Scholar
Wang, J., Wang, Z., Mao, H., Zhao, H., Huang, D. (2013). Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Research 150, 8390.CrossRefGoogle Scholar
Waraich, E. A., Ahmad, R., Saifullah, , Ashraf, M. Y. & Ehsanullah., (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science 5, 764777.Google Scholar
Xu, J. & Hu, Q. (2004). Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice. Journal of Agricultural and Food Chemistry 52, 17591763.CrossRefGoogle ScholarPubMed
Yang, F., Chen, L., Hu, Q. & Pan, G. (2003). Effect of the application of selenium on selenium content of soybean and its products. Biological Trace Element Research 93, 249256.CrossRefGoogle ScholarPubMed
Yao, X., Chu, J. & Wang, G. (2009). Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research 130, 283290.CrossRefGoogle ScholarPubMed
Yao, X. Q., Chu, J. Z. & Ba, C. J. (2010). Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research 136, 96105.CrossRefGoogle ScholarPubMed
Yao, X., Chu, J. Z., He, X., Liu, B. B., Li, J. M. & Yue, Z. W. (2013). Effects of selenium on agronomical characters of winter wheat exposed to enhanced ultraviolet-B. Ecotoxicology and Environmental Safety 92, 320326.CrossRefGoogle ScholarPubMed
Zadoks, J. C., Chang, T. T. & Konzac, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar
Zahedi, H., Rad, A. H. S. & Moghadam, H. R. T. (2012). Effect of zeolite and selenium foliar application on growth, production and some physiological attributes of three canola (Brassica napus L.) cultivars subjected to drought stress. Revista Científica UDO Agrícola 12, 135142.Google Scholar
Zayed, A., Lytle, C. M. & Terry, N. (1998). Accumulation and volatilization of different chemical species of selenium by plants. Planta 206, 284292.CrossRefGoogle Scholar
Zhang, P. Z., Cheng, H., Edwards, R. L., Chen, F. H., Wang, Y. J., Yang, X. L., Liu, J., Tan, M., Wang, X. F., Liu, J. H., An, C. L., Dai, Z. B., Zhou, J., Zhang, D. Z., Jia, J. H., Jin, L. Y., & Johnson, K. R. (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940942.CrossRefGoogle Scholar