Skip to main content Accessibility help
×
Home

Screening and identification of tobacco mutants resistant to tobacco and cucumber mosaic viruses

  • L. L. SHEN (a1) (a2), H. J. SUN (a1), Y. M. QIAN (a1), D. CHEN (a1) (a2), H. X. ZHAN (a1), J. G. YANG (a1) and F. L. WANG (a1) (a2)...

Summary

Deploying resistant cultivars is an economical and essential management method in controlling viral diseases, and there are several mutational resources for tobacco. In the present study, the inoculation of tobacco plants with tobacco viruses was performed in a greenhouse from 2011 to 2014 to identify mutants resistant to tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). The high-throughput screening included seeding uniformly, transplanting in seedbeds, inoculating by cloth brushes and reporting symptoms based on disease indices. A total of 4000 second generation segregating (M2) mutants of tobacco cultivar Zhongyan100 were screened. Seeds from highly resistant mutant M2 plants were selected and planted separately. The M3 were grown and mutational stability was measured. For TMV, ten highly resistant plants were selected in the M2 generation and the mutation rate was 0·012%. In the M3 generation, there were seven mutants with hereditary high resistance and, according to the results of real-time polymerase chain reaction, the N gene was detected in all seven M3. Two hereditary immune M4 mutants, one of which was a male sterile line, were identified and evaluated in the glasshouse and in the field. For CMV, seven highly resistant plants were selected from the M2 generation and the mutation rate was 0·009%. In the M3 generation, there was one mutant with hereditary high resistance. The results indicate that hereditary mutants may be identified in the M4 generation and back-crossed to wild-type Zhongyan100 to identify anti-viral genes.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: sdrzsll@tom.com, jinguangyang@126.com

References

Hide All
Canto, T. & Palukaitis, P. (1999). The hypersensitive response to cucumber mosaic virus in Chenopodium amaranthicolor requires virus movement outside the initially infected cell. Virology 265, 7482.
Chen, W., Huang, T., Dai, J., Liu, W. T., Cheng, J. L. & Wu, Y. F. (2014). Evaluations of tobacco cultivars resistance to tobacco mosaic virus and potato virus Y. Plant Pathology Journal 13, 3743.
Chu, Z. H. (2011). Isolation and characterization of a recessive resistance gene, xa13, for bacterial blight in rice. Journal of Huazhong Agricultural University 30, 390392.
Chu, Z. H., Yuan, M., Yao, J. L., Ge, X. J., Yuan, B., Xu, C. G., Li, X. H., Fu, B. Y., Li, Z. K., Bennetzen, J. L., Zhang, Q. F. & Wang, S. P. (2006). Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development 20, 12501255.
Dinesh-Kumar, S. P., Tham, W. H. & Baker, B. J. (2000). Structure-function analysis of the tobacco mosaic virus resistance gene N. Proceedings of the National Academy of Sciences of the United States of America 97, 1478914794.
Holmes, F. O. (1938). Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28, 553561.
Huang, T., Wu, Y. F., Chen, W. & Cheng, J. L. (2013). Identification of the resistance of tobacco varieties to tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Acta Phytopathologica Sinica 43, 5057.
Kong, F. Y., Wang, F. L., Zhang, C. S., Qian, Y. M., Wang, J., Chen, D. X. & Shen, L. L. (2009). Grade and Investigation Method of Tobacco Diseases and Insect Pests (GB/T 23222-2008). Beijing: Standards Press of China.
Lin, Z. W., Liu, Y., Li, M. Y., Li, Y. P. & Ding, C. (2010). The resistance evaluation method of tobacco germplasm to potato virus Y. Chinese Agricultural Science Bulletin 26, 269274.
Marathe, R., Anandalakshmi, R., Liu, Y. L. & Dinesh-Kumar, S. P. (2002). The tobacco mosaic virus resistance gene, N . Molecular Plant Pathology 3, 167172.
Otsuki, Y., Shimomura, T. & Takebe, I. (1972). Tobacco mosaic virus multiplication and expression of the N gene in necrotic responding tobacco varieties. Virology 50, 4550.
Padgett, H. S., Watanabe, Y. & Beachy, R. N. (1997). Identification of the TMV replicase sequence that activates the N gene- mediated hypersensitive response. Molecular Plant-Microbe Interactions 10, 709715.
Ren, G. W., Kong, F. Y., Wang, F. L., Qian, Y. M., Wang, G., Zhang, C. S., Wang, X. F., Chen, D. X., Wang, J. & Wang, X. W. (2009). Identification of Cultivar Resistance to Tobacco Disease (GB/T 23224-2008). Beijing: Standards Press of China.
Takahashi, H., Goto, N. & Ehara, Y. (1994). Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana . Plant Journal 6, 369377.
Tang, Q. Y. (2009). DPS Data Processing System – Experimental Design, Statistical Analysis and Data Mining (Second Edition). Beijing: Science Press.
White, R. F. & Sugars, J. M. (1996). The systemic infection by tobacco mosaic virus of tobacco plants containing the N gene at temperatures below 28 °C. Journal of Phytopathology 144, 139142.
Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. & Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 11011115.
Zhang, M. X., Luo, R. T. & Xu, B. C. (1990). Study on induction and selection of mutants for blast disease (Piricula oryzae) resistance. Acta Agriculturae Nucleatae Sinica 4, 7579.
Zhang, Y., Luo, C. G., Yin, Y., Hu, X. B., Dai, P. G. & Zhang, B. (2013). Tobacco N gene and its application in genetic breeding. Chinese Agricultural Science Bulletin 29, 8992.

Screening and identification of tobacco mutants resistant to tobacco and cucumber mosaic viruses

  • L. L. SHEN (a1) (a2), H. J. SUN (a1), Y. M. QIAN (a1), D. CHEN (a1) (a2), H. X. ZHAN (a1), J. G. YANG (a1) and F. L. WANG (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed