Skip to main content Accessibility help

Quantifying N2O emissions from intensive grassland production: the role of synthetic fertilizer type, application rate, timing and nitrification inhibitors

  • M. J. BELL (a1), J. M. CLOY (a1), C. F. E. TOPP (a1), B. C. BALL (a1), A. BAGNALL (a2), R. M. REES (a1) and D. R. CHADWICK (a3)...


Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Atkinson, A. C. (1985). Plots, Transformations and Regression. Oxford, UK: Oxford University Press.
Barneze, A. S., Minet, E. P., Cerri, C. C. & Misselbrook, T. (2015). The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere 119, 122129.
Bell, M. J., Cloy, J. M. & Rees, R. M. (2014). The true extent of agriculture's contribution to national greenhouse gas emissions. Environmental Science and Policy 39, 112.
Bell, M. J., Rees, R. M., Cloy, J. M., Topp, C. F. E., Bagnall, A. & Chadwick, D. R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment 508, 343353.
Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. (2002 a). Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles 16, article no. 1058. DOI: 10.1029/2001GB001811.
Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. (2002 b). Modelling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16, article no. 1080. DOI: 10.1029/2001GB001812.
Brown, L., Scholefield, D., Jewkes, E. C., Lockyer, D. R. & Del Prado, A. (2005). NGAUGE: a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agriculture, Ecosystems and Environment 109, 2039.
Burchill, W., Li, D., Lanigan, G-J., Williams, M. & Humphreys, J. (2014). Interannual variation in nitrous oxide emissions from perennial ryegrass/white clover grassland used for dairy production. Global Change Biology 20, 31373164.
Cardenas, L. M., Thorman, R., Ashlee, N., Butler, M., Chadwick, D., Chambers, B., Cuttle, S., Donovan, N., Kingston, H., Lane, S., Dhanoa, M. S. & Scholefield, D. (2010). Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agriculture, Ecosystems & Environment 136, 218226.
Chadwick, D. R., Cardenas, L., Misselbrook, T. H., Smith, K. A., Rees, R. M., Watson, C. J., McGeough, K. L., Williams, J. R., Cloy, J. M., Thorman, R. E. & Dhanoa, M. S. (2014). Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. European Journal of Soil Science 65, 295307.
Cookson, W. R. & Cornforth, I. S. (2002). Dicyandiamide slows nitrification in dairy cattle urine patches: effects on soil solution composition, soil pH and pasture yield. Soil Biology and Biochemistry 34, 14611465.
Dai, Y., Di, H. J., Cameron, K. C. & He, J.-Z. (2013). Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil. Science of the Total Environment 465, 125135.
Dechow, R. & Freibauer, A. (2011). Assessment of German nitrous oxide emissions using empirical modelling approaches. Nutrient Cycling in Agroecosystems 91, 235254.
Defra (2010). Fertilizer Manual, 8th edn (RB209). Norwich, UK: The Stationery Office.
Dobbie, K. E. & Smith, K. A. (2003 a). Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutrient Cycling in Agroecosystems 67, 3746.
Dobbie, K. E. & Smith, K. A. (2003 b). Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Global Change Biology 9, 204218.
Dobbie, K. E., McTaggart, I. P. & Smith, K. A. (1999). Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables and mean emission factors. Journal of Geophysical Research 104, 2689126899.
Elliott, E. T., Heil, J. W., Kelly, E. F. & Monger, H. C. (1999). Soil structural and other physical properties. In Standard Soil Methods for Long-Term Ecological Research (Eds Robertson, G. P., Coleman, D. C., Bledsoe, C. S. & Sollins, P.), pp. 7485. Oxford: Oxford University Press.
Flechard, C. R., Ambus, P., Skiba, U., Rees, R. M., Hensen, A., van Amstel, A., van den Pol-van Dasselaar, A., Soussana, J.-F., Jones, M., Clifton-Brown, J., Raschi, A., Horvath, L., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J., Calanca, P., Thalman, E., Pilegaard, K., Di Marco, C., Campbell, C., Nemitz, E., Hargreaves, K. J., Levy, P. E., Ball, B. C., Jones, S. K., van de Bulk, W. C. M., Groot, T., Blom, M., Domingues, R., Kasper, G., Allard, V., Ceschia, E., Cellier, P., Laville, P., Henault, C., Bizouard, F., Abdalla, M., Williams, M., Baronti, S. & Berretti, F. (2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems & Environment 121, 135152.
Fowler, D., Skiba, U. & Hargreaves, K. J. (1997). Emissions of nitrous oxide from grasslands. In Gaseous Nitrogen Emissions from Grasslands (Eds Jarvis, S. C. & Pain, B. F.), pp. 147164. Wallingford, UK: CAB International.
Gao, B., Ju, X. T., Zhang, Q., Christie, P. & Zhang, F. S. (2011). New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences 8, 30113024.
Grant, R. F., Pattey, E., Goddard, T. W., Kryzanowski, L. M. & Puurveen, H. (2006). Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Science Society of America Journal 70, 235248.
Hansen, S., Bernard, M-E., Rochette, P., Whalen, J. K. & Dorsch, P. (2014). Nitrous oxide emissions from a fertile grassland in Western Norway following the application of inorganic and organic fertilizers. Nutrient Cycling in Agroecosystems 98, 7185.
Henault, C., Grossel, A., Mary, B., Roussel, M. & Leonard, J. (2012). Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22, 426433.
Hinton, N. J., Cloy, J. M., Bell, M. J., Chadwick, D. R., Topp, C. F. E. & Rees, R. M. (2015). Managing fertilizer nitrogen to reduce nitrous oxide emissions and emission intensities from a cultivated Cambisol in Scotland. Geoderma Regional 4, 5565.
Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R. & Robertson, G. P. (2011). Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology 17, 11401152.
IPCC (1997). Greenhouse gas emissions from agricultural soils. In Greenhouse Gas Inventory Reference Manual. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/OECD/IES (Eds Houghton, J. T., Meira Filho, L. G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D. J. & Callander, B. A.), pp. 4.87–4.124. Bracknell, UK: UK Meteorological Office.
IPCC (2006). In IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme. Prepared by the National Greenhouse Gas Inventories Programme (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Hayama, Japan: IGES.
Jones, S. K., Famulari, D., Di Marco, C. F., Nemitz, E., Skiba, U. M., Rees, R. M. & Sutton, M. A. (2011). Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmospheric Measurement Techniques 4, 21792194.
Kelliher, F. M., Clough, T. J., Clark, H., Rys, G. & Sedcole, J. R. (2008). The temperature dependence of dicyandiamide (DCD) degradation in soils: a data synthesis. Soil Biology and Biochemistry 40, 18781882.
Kelliher, F. M., Van Koten, C., Kear, M. J., Sprosen, M. S., Ledgard, S. F., De Klein, C. A. M., Letica, S. A., Luo, J. & Rys, G. (2014). Effect of temperature on dicyandiamide (DCD) longevity in pastoral soils under field conditions. Agriculture, Ecosystems and Environment 186, 201204.
Kim, D.-G., Giltrap, D., Saggar, S., Palmada, T., Berben, P. & Drysdale, D. (2012). Fate of the nitrification inhibitor dicyandiamide (DCD) sprayed on a grazed pasture: effect of rate and time of application. Soil Research 50, 337347.
Kim, D.-G., Hernandez-Ramirez, G. & Giltrap, D. (2013). Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta- analysis. Agriculture, Ecosystems and Environment 168, 5365.
Kim, D.-G., Rafique, R., Leahy, P., Cochrane, M. & Kiely, G. (2014). Estimating the impact of changing fertilizer application rate, land-use and climate on nitrous oxide emissions in Irish grasslands. Plant & Soil 374, 5571.
Lesschen, J. P., Velthof, G. L., de Vries, W. & Kros, J. (2011). Differentiation of nitrous oxide emission factors for agricultural soils. Environmental Pollution 159, 32153222.
Li, J., Shi, Y., Luo, J., Zaman, M., Houlbrooke, D., Ding, W., Ledgard, S. & Ghani, A. (2014). Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents. Biology and Fertility of Soils 50, 133145.
McSwiney, C. P. & Robertson, G. P. (2005). Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology 11, 17121719.
McTaggart, I. P., Clayton, H., Parker, J., Swan, L. & Smith, K. A. (1997). Nitrous oxide emissions from grassland and spring barley, following N fertiliser application with and without nitrification inhibitors. Biology and Fertility of Soils 25, 261268.
Merino, P., Estavillo, J. M., Besga, G., Pinto, M. & Gonzalez-Murua, C. (2001). Nitrification and denitrification derived N2O production from a grassland soil under application of DCD and Actilith F2 . Nutrient Cycling in Agroecosystems 60, 914.
Moir, J. L., Cameron, K. C., Di, H. J., Roberts, A. H. C. & Kuperus, W. (2003). The effects of urea and ammonium sulphate nitrate (ASN) on the production and quality of irrigated dairy pastures. In Tools for Nutrient and Pollutant Management: Applications to Agriculture and Environmental Quality (Eds Currie, L. D. & Hanly, J. A.), pp. 139145. Occasional Report no. 17. Palmerston North, New Zealand: Fertilizer and Lime Research Centre, Massey University.
Rees, R. M., Augustin, J., Alberti, G., Ball, B. C., Boeckx, P., Cantarel, A., Castaldi, S., Chirinda, N., Chojnicki, B., Giebels, M., Gordon, H., Grosz, B., Horvath, L., Juszczak, R., Kasimir Klemedtsson, Å., Klemedtsson, L., Medinets, S., Machon, A., Mapanda, F., Nyamangara, J., Olesen, J. E., Reay, D. S., Sanchez, L., Sanz Cobena, A., Smith, K. A., Sowerby, A., Sommer, M., Soussana, J. F., Stenberg, M., Topp, C. F. E., van Cleemput, O., Vallejo, A., Watson, C. A. & Wuta, M. (2013). Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments. Biogeosciences 10, 26712682.
Shcherbak, I., Millar, N. & Robertson, G. P. (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America 111, 91999204.
Shoji, S., Delgado, J., Mosier, A. & Miura, Y. (2001). Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Communications in Soil Science and Plant Analysis 32, 10511070.
Singh, U., Sanabria, J., Austin, E. R. & Agyin-Birikorang, S. (2011). Nitrogen transformation, ammonia volatilization loss, and nitrate leaching in organically enhanced nitrogen fertilizers relative to urea. Soil Science Society of America 76, 18421854.
Skiba, U. & Smith, K. A. (2000). The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere – Global Change Science 2, 379386.
Smith, K. A. & Massheder, J. (2014). Predicting nitrous oxide emissions from N- fertilized grassland soils in the UK from three soil variables, using the B-LINE 2 model. Nutrient Cycling in Agroecosystems 98, 309326.
Smith, K. A., Dobbie, K. E., Thorman, R., Watson, C. J., Chadwick, D. R., Yamulki, S. & Ball, B. C. (2012). The effect of N fertilizer forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems 93, 127149.
Stehfest, E. & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems 74, 207228.
Zebarth, B. J., Rochette, P. & Burton, D. L. (2008). N2O emissions from Spring barley production as influenced by fertilizer nitrogen rate. Canadian Journal of Soil Science 88, 197205.

Quantifying N2O emissions from intensive grassland production: the role of synthetic fertilizer type, application rate, timing and nitrification inhibitors

  • M. J. BELL (a1), J. M. CLOY (a1), C. F. E. TOPP (a1), B. C. BALL (a1), A. BAGNALL (a2), R. M. REES (a1) and D. R. CHADWICK (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed