Skip to main content Accessibility help

Plant breeding and climate changes

  • S. CECCARELLI (a1), S. GRANDO (a1), M. MAATOUGUI (a1), M. MICHAEL (a1), M. SLASH (a1), R. HAGHPARAST (a2), M. RAHMANIAN (a3), A. TAHERI (a3), A. AL-YASSIN (a4), A. BENBELKACEM (a5), M. LABDI (a6), H. MIMOUN (a6) and M. NACHIT (a1)...


Climate change is now unequivocal, particularly in terms of increasing temperature, increasing CO2 concentration, widespread melting of snow and ice and rising global average sea level, while the increase in the frequency of drought is very probable but not as certain.

However, climate changes are not new and some of them have had dramatic impacts, such as the appearance of leaves about 400 million years ago as a response to a drastic decrease in CO2 concentration, the birth of agriculture due to the end of the last ice age about 11 000 years ago and the collapse of civilizations due to the late Holocene droughts between 5000 and 1000 years ago.

The climate changes that are occurring at present will have – and are already having – an adverse effect on food production and food quality with the poorest farmers and the poorest countries most at risk. The adverse effect is a consequence of the expected or probable increased frequency of some abiotic stresses such as heat and drought, and of the increased frequency of biotic stresses (pests and diseases). In addition, climate change is also expected to cause losses of biodiversity, mainly in more marginal environments.

Plant breeding has addressed both abiotic and biotic stresses. Strategies of adaptation to climate changes may include a more accurate matching of phenology to moisture availability using photoperiod-temperature response, increased access to a suite of varieties with different duration to escape or avoid predictable occurrences of stress at critical periods in crop life cycles, improved water use efficiency and a re-emphasis on population breeding in the form of evolutionary participatory plant breeding to provide a buffer against increasing unpredictability. ICARDA, in collaboration with scientists in Iran, Algeria, Jordan, Eritrea and Morocco, has recently started evolutionary participatory programmes for barley and durum wheat. These measures will go hand in hand with breeding for resistance to biotic stresses and with an efficient system of variety delivery to farmers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plant breeding and climate changes
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plant breeding and climate changes
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plant breeding and climate changes
      Available formats


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Abay, F. & Bjørnstad, A. (2009). Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica 167, 181195.
Addo-Bediako, A., Chown, S. L. & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B 267, 739745.
Allard, R. W. (1960). Principles of Plant Breeding. New York: John Wiley and Sons.
Allard, R. W. (1990). The genetics of host–pathogen coevolution: implications for genetic resource conservation. Journal of Heredity 81, 16.
Allard, R. W., Babbel, G. R., Clegg, M. T. & Kahler, A. L. (1972). Evidence for coadaptation in Avena barbata. Proceedings of the National Academy of Sciences, USA 69, 30433048.
Allen, L. H. Jr, Boote, K. J., Jones, J. W., Jones, P. H., Valle, R. R., Acock, B., Rogers, H. H. & Dahlman, R. C. (1987). Response of vegetation to rising carbon dioxide: Photosynthesis, biomass, and seed yield of soybean. Global Biogeochemical Cycles I, 114.
Altieri, M. A. (1995). Agroecology: The Science of Sustainable Agriculture. Boulder, CO: Westview Press.
Altieri, M. A. & Koohafkan, P. (2003). Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities. Third World Network Environmental & Development Series 6. Penang, Malaysia: TWN.
Atkinson, M. D., Kettlewell, P. S., Poulton, P. R. & Hollins, P. D. (2008). Grain quality in the Broadbalk wheat experiment and the winter North Atlantic oscillation. Journal of Agricultural Science, Cambridge 146, 541549.
Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC Secretariat.
Beerling, D. J. (2007). The Emerald Planet: How Plants Changed Earth's History. Oxford, UK: Oxford University Press.
Beerling, D. J., Osborne, C. P. & Chaloner, W. G. (2001). Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410, 352354.
Bou-Zeid, E. & El-Fadel, M. (2002). Climate change and water resources in Lebanon and the Middle East. Journal of Water Resources Planning and Management 128, 343355.
Bradshaw, W. E. & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science 312, 14771478.
Brown, M. E. & Funk, C. C. (2008). Food security under climate change. Science 319, 580581.
Ceccarelli, S. (2009). Evolution, plant breeding and biodiversity. Journal of Agriculture and Environment for International Development 103, 131145.
Ceccarelli, S. & Grando, S. (2000). Barley landraces from the Fertile Crescent: a lesson for plant breeders. In Genes in the Field: On-farm Conservation of Crop Diversity (Ed. Brush, S. B.), pp. 5176. Boca Raton, FL: IDRC.
Ceccarelli, S. & Grando, S. (2007). Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155, 349360.
Ceccarelli, S., Valkoun, J., Erskine, W., Weigand, S., Miller, R. & Van Leur, J. A. G. (1991). Plant genetic resources and plant improvement as tools to develop sustainable agriculture. Experimental Agriculture 28, 8998.
Ceccarelli, S., Grando, S., Baum, M. & Udupa, S. M. (2004). Breeding for drought resistance in a changing climate. In Challenges and Strategies for Dryland Agriculture (Eds Rao, S. C. & Ryan, J.), pp. 167190. CSSA Special Publication No. 32. Madison, WI: ASA and CSSA.
Ceccarelli, S., Grando, S. & Baum, M. (2007). Participatory plant breeding in water-limited environments. Experimental Agriculture 43, 411435.
Cheikh, N., Miller, P. W. & Kishore, G. (2000). Role of biotechnology in crop productivity in a changing environment. In Climate Change and Global Crop Productivity (Eds Reddy, K. R. & Hodges, H. F.), pp. 425436. New York, NY: CAB International.
Clark, C. M. & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712715.
Cline, W. R. (2007). Global Warming and Agriculture: Impact Estimates by Country, Washington, DC: Peterson Institute for International Economics.
Conway, G. R. (1997). The Doubly Green Revolution: Food for All in the Twenty-First Century. Ithaca, NY: Cornell University Press.
Corte, H. R., Ramalhol, M. A. P., Goncalves, F. M. A. & Abreu, A. D. F. B. (2002). Natural selection for grain yield in dry bean populations bred by the bulk method. Euphytica 123, 387393.
Crow, J. F. (1992). An advantage of sexual reproduction in a rapidly changing environment. Journal of Heredity 83, 169173.
Cure, J. D. & Acock, B. (1986). Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forestry Meteorology 38, 127145.
Danquah, E. Y. & Barrett, J. A. (2002). Grain yield in composite cross five of barley: Effects of natural selection. Journal of Agricultural Science, Cambridge 138, 171176.
DeMenocal, P. B. (2001). Cultural responses to climate change during the late Holocene. Science 292, 667673.
Denevan, W. M. (1995). Prehistoric agricultural methods as models for sustainability. Advances in Plant Pathology 11, 2143.
Dixon, J., Nalley, L., Kosina, P., La Rovere, R., Hellin, J. & Aquino, P. (2006). Adoption and economic impact of improved wheat varieties in the developing world. Journal of Agricultural Science, Cambridge 144, 489502.
Drennen, P. M., Smith, M., Goldsworthy, D. & Van Staten, J. (1993). The occurrence of trahaolose in the leaves of the desiccation tolerant angiosperm Myronthamnus flabellifoliius Welw. Journal of Plant Physiology 142, 493496.
Evans, L. T. (2005). The changing context for agricultural science. Journal of Agricultural Science, Cambridge 143, 710.
Flora, C. (2001). Interactions between Agroecosystems and Rural Communities. Boca Raton, FL: CRC Press.
Garrett, K. A. & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology 89, 984990.
Gepts, P. (2006). Plant genetic resources conservation and utilization: the accomplishment and future of a societal insurance policy. Crop Science 46, 22782292.
Giles, J. (2007). How to survive a warming world. Nature 446, 716717.
Grando, S., Von Bothmer, R. & Ceccarelli, S. (2001). Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In Broadening the Genetic Base of Crop Production (Eds Cooper, H. D., Spillane, C. & Hodgink, T.), pp. 351372. New York/Rome: CABI//FAO/IPRI.
Gray, J. E., Holroyd, G. H., Van Der Lee, F. M., Bahrami, A. R., Sijmons, P. C., Woodward, F. I., Schuch, W. & Hetherington, A. M. (2000). The HIC signaling pathway links CO2 perception to stomatal development. Nature 408, 713716.
Habash, D. Z., Kehel, Z. & Nachit, M. (2009). Genomic approaches for designing durum wheat ready for climate change with a focus on drought. Journal of Experimental Botany 60, 28052815.
Harlan, H. V. & Martini, M. L. (1929). A composite hybrid mixture. Journal of the American Society of Agronomy 21, 487490.
Hartwig, E. E., Kilen, T. C., Young, L. D. & Edwards, C. J. Jr. (1982). Effects of natural selection in segregating soybean populations exposed to phytophthora rot or soybean cyst nematodes. Crop Science 22, 588590.
Humphreys, M. O. (2005). Genetic improvement of forage crops – past, present and future. Journal of Agricultural Science, Cambridge 143, 441448.
IPCC (Intergovernmental Panel on Climate Change). (2007). Climate Change 2007. The Physical Science Basis: Summary for Policymakers. Geneva, Switzerland: IPCC Secretariat.
Kimball, B. A. (1983). Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal 75, 779788.
Kishor, P. B. K., Hong, Z., Miao, G., Hu, C. & Verma, D. (1995). Overexpression of Δ1-pyrroline-5-carboxylase synthase increases praline production and confers osmotolerance in transgenic plants. Journal of Plant Physiology 108, 13871394.
Lawrie, R. G., Matus-Cádiz, M. A. & Hucl, P. (2006). Estimating out-crossing rates in spring wheat cultivars using the contact method. Crop Science 46, 247249.
Leakey, A. B. D., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R. & Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology 140, 779790.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 19181921.
Marshall, D. R. & Allard, R. W. (1970). Maintenance of isozyme polymorphisms in natural populations of Avena barbata. Genetics 66, 393399.
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge, UK: Cambridge University Press.
Mendum, R. & Glenna, L. L. (2010). Socioeconomic obstacles to establishing a participatory plant breeding program for organic growers in the United States. Sustainability 2, 7391.
Ming, X. (2009). Yangtze River Basin Climate Change Vulnerability and Adaptation Report. Beijing, China: WWF.
Miskin, K. E. & Rasmusson, D. C. (1970). Frequency and distribution of stomata in barley. Crop Science 10, 575578.
Morran, L. T., Parmenter, M. D. & Phillips, P. C. (2009). Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 462, 350352.
Muona, O., Allard, R. W. & Webster, R. K. (1982). Evolution of resistance to Rhynchosporium secalis (Oud.) Davis in barley composite cross II. Theoretical and Applied Genetics 61, 209214.
Murphy, K., Lammer, D., Lyon, S., Carter, B. & Jones, S. S. (2005). Breeding for organic and low-input farming systems: an evolutionary–participatory breeding method for inbred cereal grains. Renewable Agriculture and Food Systems 20, 4855.
Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M. & Lee, D. (2009). Climate Change: Impact on Agriculture and Costs of Adaptation. Food Policy Report. Washington, DC: International Food Policy Research Institute.
Oerke, E.-C. (2006). Crop losses to pests. Journal of Agricultural Science, Cambridge 144, 3143.
Phillips, S. L. & Wolfe, M. S. (2005). Evolutionary plant breeding for low input systems. Journal of Agricultural Science, Cambridge 143, 245254.
Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J. W., Weisbeek, P. J. & Smeekens, S. C. M. (1995). Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology 107, 125130.
Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Disease 84, 203.
Rodriguez, M., Rau, D., Papa, R. & Attene, G. (2008). Genotype by environment interactions in barley (Hordeum vulgare L): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163, 231247.
Rosen, A. M. (1990). Environmental change at the end of early Bronze Age Palestine. In L'urbanisation de la Palestine à l’âge du Bronze ancien (Ed. De Miroschedji, P.), pp. 247255. Oxford, UK: BAR International.
Sarker, A. & Erskine, W. (2006). Recent progress in the ancient lentil. Journal of Agricultural Science, Cambridge 144, 1929.
Sinclair, T. R. & Purcell, L. C. (2005). Is a physiological perspective relevant in a ‘genocentric’ age? Journal of Experimental Botany 56, 27772782.
Singh, R. P., Hodson, D. P., Jin, Y., Huerta-Espino, J., Kinyua, M. G., Wanyera, R., Njau, P. & Ward, R. W. (2006). Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 4, 113.
Stebbins, G. L. (1957). Self-fertilization and population variation in higher plants. American Naturalist 91, 337354.
Stern, N. (2005). Stern Review on the Economics of Climate Change. Cambridge, UK: Cambridge University Press. Available online at (verified 15 July 2010).
Suneson, C. A. (1956). An evolutionary plant breeding method. Agronomy Journal 48, 188191.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., De Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Person, A. T., Phillips, O. L. & Williams, S. E. (2004). Extinction risk from climate change. Nature 427, 145148.
Tubiello, F. N. & Fischer, G. (2007). Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000–2080. Technological Forecasting and Social Change 74, 10301056.
Turney, C. S. M. & Brown, H. (2007). Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe. Quaternary Science Reviews 26, 20362041.
Vavilov, N. I. (1992). Origin and Geography of Cultivated Plants. Cambridge, UK: Cambridge University Press.
Walker, G. (2007). A world melting from the top down. Nature 446, 718721.
Williams, S. E., Bolitho, E. E. & Fox, S. (2003). Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proceedings of the Royal Society of London B 270, 18871892.
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325. doi:10.1371/journal.pbio.0060325.
Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology 23, 251273.
Woodward, F. I. (1987). Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617618.
Zhang, Y., Chen, W. & Cihlar, J. (2003). A process-based model for quantifying the impact of climate change on permafrost thermal regimes. Journal Geophysical Research 108, 4695. doi:10.1029/2002JD003354.
Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J. X., Yang, S., Hu, L., Leung, H., Mew, T. W., Teng, P. S., Wang, Z. & Mundt, C. C. (2000). Genetic diversity and disease control in rice. Nature 406, 718722.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed