Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T12:13:57.827Z Has data issue: false hasContentIssue false

Pheno-morphological and agronomic diversity among Scorpiurus muricatus (Fabaceae) natural populations collected in Sicily

Published online by Cambridge University Press:  20 April 2009

G. DI GIORGIO
Affiliation:
Dipartimento di Agronomia ambientale e territoriale, Università di Palermo, Viale delle Scienze, 90128Palermo, Italy
D. GRAZIANO
Affiliation:
Dipartimento di Agronomia ambientale e territoriale, Università di Palermo, Viale delle Scienze, 90128Palermo, Italy
P. RUISI
Affiliation:
Dipartimento di Agronomia ambientale e territoriale, Università di Palermo, Viale delle Scienze, 90128Palermo, Italy
G. AMATO*
Affiliation:
Dipartimento di Agronomia ambientale e territoriale, Università di Palermo, Viale delle Scienze, 90128Palermo, Italy
D. GIAMBALVO
Affiliation:
Dipartimento di Agronomia ambientale e territoriale, Università di Palermo, Viale delle Scienze, 90128Palermo, Italy
*
*To whom all correspondence should be addressed. Email: amato@unipa.it

Summary

Prickly scorpion's tail (Scorpiurus muricatus L.) is a self-reseeding annual legume widely distributed in natural pastures of the Mediterranean area and appreciated by farmers for its productivity, forage quality and palatability. Twenty-eight natural populations were collected throughout Sicily in 2005; two field experiments were carried out in 2005/06 in a hilly area of the Sicilian inland to assess the genetic variation based on pheno-morphological and agronomic characters. The pheno-morphological traits observed were analysed using a principal component analysis (PCA). The first four components of PCA (eigenvalues >1) explained 0·84 of the total variation. Similarities obtained by PCA were investigated by means of cluster analysis, which clearly identified five clusters.

The pheno-morphological and agronomic traits were mainly affected by latitude of the collection site (0·69 of the correlations were significant), spring rainfall (0·63) and rain days per year (0·63). Altitude was not significantly correlated with any of the traits.

A strong positive correlation was found between the days to the first flower and spring rainfall at the collection site. Populations originating from subhumid or dry-subhumid Mediterranean climate zones showed greater leaf dimensions when compared with those originating from semi-arid zones. Seed weight decreased with increasing number of rain days per year and spring rainfall. Populations from drier environments showed, on the whole, a more prostrate growth habit. Dry matter yield at spring cut exhibited a significant correlation with latitude (positive) and longitude (negative). Seed production was highly correlated with spring rainfall, number of rain days per year and latitude of collection site. The presence of a large diversity among populations appears to be valuable when searching for suitable S. muricatus material to exploit in pastures and crop–livestock farming systems of Mediterranean areas.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beale, P. E., Lahlou, A. & Bounejmate, M. (1991). Distribution of wild annual legume species in Morocco and relationship with soil and climatic factors. Australian Journal of Agricultural Research 42, 12171230.CrossRefGoogle Scholar
Bennett, S. J. (1997). Genetic variation between and within two populations of Trifolium glomeratum L. (cluster clover) in Western Australia. Australian Journal of Agricultural Research 48, 969976.CrossRefGoogle Scholar
Bensalem, K., Abdelguerfi, A. & Abdelguerfi-Berrekia, R. (1990). Relation du genre Scorpiùrus L. avec certains facteurs du milieu en Algérie. Fourrages 124, 407419.Google Scholar
Berger, J. D., Robertson, L. D. & Cocks, P. S. (2002). Agricultural potential of Mediterranean grain and forage legumes: key differences between and within Vicia species in terms of phenology, yield, and agronomy give insight into plant adaptation to semi-arid environments. Genetic Resources and Crop Evolution 49, 313325.CrossRefGoogle Scholar
Carpino, S., Mallia, S., La Terra, S., Melilli, C., Licitra, G., Acree, T. E., Barbano, D. M. & Van Soest, P. J. (2004). Composition and aroma compounds of Ragusano cheese: native pasture and total mixed rations. Journal of Dairy Science 87, 816830.CrossRefGoogle ScholarPubMed
Cartabellotta, D., Drago, A., Lo Bianco, B. & Lombardo, M. (1998). Climatologia della Sicilia. Palermo: Regione Siciliana, Assessorato Agricoltura e Foreste.Google Scholar
Charlesworth, D. & Charlesworth, B. (1995). Quantitative genetics in plants: the effect of breeding system on genetic variability. Evolution 49, 911920.CrossRefGoogle ScholarPubMed
Curll, M. L. & Jones, R. M. (1989). The plant-animal interface and legume persistence: an Australian perspective. In Persistence of Forage Legumes: Proceedings of a Trilateral Workshop (Eds Martin, G. C., Matches, A. G., Barnes, R. F., Brougham, R. W., Clements, R. J. & Sheath, G. W.), pp. 339360. Madison, WI: ASA-CSSA-SSSA.Google Scholar
Davies, W. E. & Young, N. R. (1967). The characteristics of European, Mediterranean and other populations of white clover (T. repens). Euphytica 16, 330340.Google Scholar
Del Pozo, A., Ovalle, C., Aronson, J. & Avendaño, J. (2002). Ecotypic differentiation in Medicago polymorpha L. along an environmental gradient in central Chile. I. Phenology, biomass production and reproductive patterns. Plant Ecology 159, 119130.CrossRefGoogle Scholar
De Martonne, E. (1927). Regions of interior basin drainage. Geographical Review 17, 397414.CrossRefGoogle Scholar
Dominguez, E. & Galiano, E. F. (1974). Revisión del género Scorpiurus L. I. Parte experimental. Lagascalia 4, 6184.Google Scholar
Ehrman, T. & Cocks, P. S. (1990). Ecogeography of annual legumes in Syria: distribution patterns. Journal of Applied Ecology 27, 578591.CrossRefGoogle Scholar
Ehrman, T. & Cocks, P. S. (1996). Reproductive patterns in annual legume species on an aridity gradient. Vegetation 122, 4759.CrossRefGoogle Scholar
El Shaer, H. M. (1995). Potential use of cultivated range plants as animal feed in the Mediterranean coastal zone of Egypt. Cahiers Options Méditerranéennes 12, 151154.Google Scholar
Emberger, L. (1955). Une classification biogéographique des climats. Recueil des Travaux du Laboratoire de Botanique, Géologie et Zoologie de la Faculté des Sciences de l'Université de Montpellier, Série Botanique 7, 343.Google Scholar
Francis, C. M. & Gladstones, J. S. (1974). Relationships among rate and duration of flowering and seed yield components in subterranean clover (Trifolium subterraneum). Australian Journal of Agricultural Research 25, 435442.CrossRefGoogle Scholar
Galvano, G., Alizzio, A. & Sinatra, M. C. (1980). Agro-zootecnical aspects of the Iblei territory. Tecnica Agricola 1–2, 335.Google Scholar
Gresta, F., Avola, G. & Abbate, V. (2007). Germination ecology of Scorpiurus subvillosus L. seeds: the role of temperature and storage time. Plant Ecology 190, 123130.CrossRefGoogle Scholar
Hamrick, J. L. & Godt, M. J. W. (1989). Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources (Eds Brown, A. H. D., Clegg, M. T., Kahler, A. L. & Weir, B. S.), pp. 4363. Sunderland, MA: Sinauer.Google Scholar
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement 20, 141151.CrossRefGoogle Scholar
Kira, T. (1976). Terrestrial Ecosystem. Tokyo: Kyoritsu.Google Scholar
Le Houérou, H. N. (2001). Unconventional forage legumes for rehabilitation of arid and semiarid lands in world isoclimatic Mediterranean zones. Arid Land Research and Management 15, 185202.CrossRefGoogle Scholar
Licitra, G., Carpino, S., Schadt, I., Avondo, M. & Barresi, S. (1997). Forage quality of native pastures in a Mediterranean area. Animal Feed Science and Technology 69, 315328.CrossRefGoogle Scholar
Loi, A., Howieson, J. G., Cocks, P. S. & Carr, S. J. (1999). Genetic variation in populations of two Mediterranean annual pasture legumes (Bisserula pelecinus L. and Ornithopus compressus L.) and associated rhizobia. Australian Journal of Agricultural Research 50, 303313.CrossRefGoogle Scholar
Loi, A., Porqueddu, C., Veronesi, F. & Cocks, P. S. (1995). Distribution, diversity and potential agronomic values of Medicago polymorpha in Sardinia. Journal of Agricultural Science, Cambridge 124, 419426.CrossRefGoogle Scholar
Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
Milligan, G. W. & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159179.CrossRefGoogle Scholar
Norman, H. C., Cocks, P. S., Smith, F. P. & Nutt, B. J. (1998). Reproductive strategies in Mediterranean annual clovers: germination and hardseededness. Australian Journal of Agricultural Research 49, 973982.CrossRefGoogle Scholar
Patanè, C., Sortino, O. & Abbate, V. (1997). Valutazione della variabilità morfobiologica di ecotipi di Scorpiurus subvillosus L. reperiti nell'altopiano ibleo. In Biodiversità: Tecnologie – Qualità, Proceedings of 3rd Convegno Nazionale (Eds Di Prima, G. & Mincione, B.), pp. 321334, Reggio Calabria, Italy: Laruffa Editore.Google Scholar
Pecetti, L. & Piano, E. (1994). Observations on the rapidity of seed and burr growth in subterranean clover. Journal of Genetics and Breeding 48, 225228.Google Scholar
Pengelly, B. C. & Maass, B. L. (2001). Lablab purpureus (L.) Sweet – diversity, potential use and determination of a core collection of this multi-purpose tropical legume. Genetic Resources and Crop Evolution 48, 261272.CrossRefGoogle Scholar
Piano, E., Pecetti, L. & Carroni, A. M. (1996). Climatic adaptation in subterranean clover populations. Euphytica 92, 3944.CrossRefGoogle Scholar
Rossiter, R. C. & Collins, W. J. (1988). Genetic diversity in old subterranean clover (Trifolium subterraneum L.) populations in western Australia. I. Pastures sown initially to the Dwalganup strain. Australian Journal of Agricultural Research 39, 10511062.CrossRefGoogle Scholar
SAS Institute Inc. (2002). SAS/STAT User's Guide, version 8.02. Cary, NC: SAS Institute Inc.Google Scholar
Taylor, G. B. (1993). Effect of some characteristics of diurnal temperature fluctuations on the softening of hard seeds of Medicago polymorpha. In Proceedings of the XVII International Congress, pp. 256257. Palmertson North, New Zealand.Google Scholar
Thornthwaite, C. W. (1948). An approach to a rational classification of climate. Geographical Review 38, 5594.CrossRefGoogle Scholar
UTHSCSA (2008). Image Tool Version 3.0. San Antonio, TX: University Of Texas. Available online at http://ddsdx.uthscsa.edu/dig/download.html (verified 19 January 2009).Google Scholar
Vereshchagina, V. A., Novoselova, L. V. & Kolyasnikova, N. L. (2003). The systems of reproduction of annual and perennial species of Medicago L. (Fabaceae). Czech Journal of Genetics and Plant Breeding 39, 100103.Google Scholar
Woodward, R. G. & Morley, F. H. W. (1974). Variation in Australian and European collection of Trifolium glomeratum L. and the provisional distribution of the species in southern Australia. Australian Journal of Agricultural Research 25, 7388.CrossRefGoogle Scholar
Yahiaoui-Younsi, A., Abdelguerfi, A. & Bouazza, L. (2000). Etude de la floraison de trois espèces du genre Scorpiurus L.: relation avec les conditions du milieu d'origine. Cahiers Options Méditerranéennes 45, 245248.Google Scholar
Zoghlami, A. & Zouaghi, M. (2003). Morphological variation in Astragalus hamosus L. and Coronilla scorpioides L. populations of Tunisia. Euphytica 134, 137147.CrossRefGoogle Scholar